Skip to main content
Log in

Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure (\( P_{{{\text{O}}_{2} }} \)) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Sanbongi, Y. Omori, K. Toita and M. Asada, Tetsu-to-Hagane, 1964, vol. 50, pp. 1574–1577.

    Article  Google Scholar 

  2. M. Asada, Y. Omori and K. Sanbongi, Tetsu-to-Hagane, 1968, vol. 54, pp. 14-19.

    Article  Google Scholar 

  3. K. Kojima, K. Nagano, T. Inazumi, K. Takagi and K. Shinada, Tetsu-to-Hagane, 1969, vol. 55, pp. 669–681.

    Article  Google Scholar 

  4. R. Gerardin, E. Millon, A. Bonazebi, J. F. Brice, F. Jeannot and O. Evrard, J. Phys. Chem. Solids, 1988, vol. 49, pp. 343–348.

    Article  Google Scholar 

  5. B. Bergman and C. Song, J. Am. Ceram. Soc., 1989, vol. 72, pp. 1364–1367.

    Article  Google Scholar 

  6. M. Hillert, M. Selleby and B. Sundman, Metall. Trans. A, 1990, vol. 21A, pp. 2759–2776.

    Article  Google Scholar 

  7. H. Chessin and E. T. Turkdogan, J. Am. Ceram. Soc., 1962, vol. 45, pp. 597–599.

    Article  Google Scholar 

  8. P.B. Braun and W. Kywestroo, Philips. Res. Rep., 1960, vol. 1, pp. 394–397.

    Google Scholar 

  9. B. Phillips and A. Muan, Trans. Metall. Soc. AIME, 1960, vol. 218, pp. 1112–1118.

    Google Scholar 

  10. B. Phillips and A. Muan, J. Am. Ceram. Soc., 1958, vol. 41, pp. 445–454.

    Article  Google Scholar 

  11. S.B. Holmquist, Nature, 1960, vol. 185, p. 640.

    Article  Google Scholar 

  12. Y. Kashiwaya, C. E. Cicutti and A. W. Cramb, ISIJ Int., 1998, vol. 38, pp. 357–365.

    Article  Google Scholar 

  13. Y. Kashiwaya, C. E. Cicutti, A. W. Cramb and K. Ishii, ISIJ Int., 1998, vol. 38, pp. 348–356.

    Article  Google Scholar 

  14. P. Kahn Son and Y. Kashiwaya, ISIJ Int., 2008, vol. 48, pp. 1165–1174.

    Article  Google Scholar 

  15. J. Yang, Y. Cui, L. Wang, Y. Sasaki, J. Zhang, O. Ostrovski and Y. Kashiwaya, Steel Res. Int., 2015, doi:10.1002/srin.201400346.

    Google Scholar 

  16. J. Yang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai, Y. Kashiwaya and J. Zhang, ISIJ Int., 2016, vol. 56, pp. 574–583. doi:10.2355/isijinternational.ISIJINT-2015-583.

    Article  Google Scholar 

  17. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya (2016) Metall. Mater. Trans. B. doi:10.1007/s11663-016-0715-9.

    Google Scholar 

  18. Y. Kashiwaya, T. Nakauchi, P. Khanh Son, S. Akiyama and K. Ishii, ISIJ Int., 2007, vol. 47, pp. 44–52.

    Article  Google Scholar 

  19. A. Arakcheeva, O. Karpinski, Sov. Phys – Crystallogr. (Eng. Trans.), 1990, vol. 35, pp. 650–652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kashiwaya.

Additional information

Manuscript submitted April 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwaya, Y. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air. Metall Mater Trans B 48, 3228–3238 (2017). https://doi.org/10.1007/s11663-017-1094-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1094-6

Keywords

Navigation