Skip to main content
Log in

Thermal characterization of a series of novel hepta cyclopentyl bridged POSS/PS nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of novel hepta cyclopentyl bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites, at different POSS contents (1, 3 and 5 % w/w), was synthesized and characterized. Nanocomposites were prepared by in situ polymerization of styrene in the presence of POSS which has not polymerizable groups, aiming to obtain well-dispersed POSS/PS systems. The actual filler concentration in the obtained nanocomposites was checked by 1 H NMR and FTIR spectroscopy. Degradations were carried out into a thermobalance at various heating rates in flowing nitrogen and in a static air atmosphere, and the characteristic parameters of thermal stability, namely temperature at 5 % mass loss (T 5 %) and activation energy (E a) of degradation, of the various nanocomposites were determined. We investigated the influence of the nature of POSSs cage’s periphery on the thermal stability of the obtained materials, and with this aim, we compared the properties of hepta cyclopentyl bridged POSS/PS nanocomposites with those of similar hepta isobutyl bridged POSS/PS ones previously studied. The obtained results were discussed and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez C, Julian-Lopez B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15:3559–92.

    Article  CAS  Google Scholar 

  2. Raftopoulos KN, Pielichowski K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci. 2015;. doi:10.1016/j.progpolymsci.2015.01.003.

    Google Scholar 

  3. Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim. 2010;100(3):1009–15.

    Article  CAS  Google Scholar 

  4. Wang XT, Yang YK, Yang ZF, Zhou XP, Liao YG, Lv CC, Chang FC, Xie XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102(2):739–44.

    Article  CAS  Google Scholar 

  5. Devaraju S, Vengatesan MR, Selvi M, Alagar M. Thermal and dielectric properties of newly developed linear aliphatic-ether linked bismaleimide-polyhedral oligomeric silsesquioxane (POSS-AEBMI) nanocomposites. J Therm Anal Calorim. 2014;117(3):1047–63.

    Article  CAS  Google Scholar 

  6. Villanueva M, Martín-Iglesias JL, Rodríguez-Añón JA, Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n = 0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96(2):575–82.

    Article  CAS  Google Scholar 

  7. Lin PH, Khare R. Glass transition and structural properties of glycidyloxypropyl–heptaphenyl polyhedral oligomeric silsesquioxane-epoxy nanocomposites. J Therm Anal Calorim. 2010;102(2):461–7.

    Article  CAS  Google Scholar 

  8. Zhang W, Li X, Yang R. Study on flame retardancy of TGDDM epoxy resins loaded with DOPO–POSS compound and OPS/DOPO mixture. Polym Degrad Stab. 2014;99:118–26.

    Article  CAS  Google Scholar 

  9. Blanco I, Abate L, Bottino FA. Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim. 2014;116:5–13.

    Article  CAS  Google Scholar 

  10. Blanco I, Abate L, Bottino FA, Bottino P. Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Calorim. 2014;117:243–50.

    Article  CAS  Google Scholar 

  11. Blanco I, Abate L, Bottino FA. Synthesis and thermal characterization of new dumbbell-shaped cyclopentyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2015;121(3):1039–48.

    Article  CAS  Google Scholar 

  12. Tang TTK, Zhao P, Yuen ACY, Yuen RKK, Lo SM. Hu Y. In: Kodur VKR, Banthia N, editors. Response of structures under extreme loading. Lancaster: DEStech Publications Inc.; 2015. p. 947.

    Google Scholar 

  13. Blanco I, Bottino FA. Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2013;34(2):225–32.

    Article  CAS  Google Scholar 

  14. Blanco I, Abate L, Bottino FA, Bottino P. Phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/Polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. Express Polym Lett. 2012;6(12):997–1006.

    Article  CAS  Google Scholar 

  15. Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites. J Therm Anal Calorim. 2013;112(1):421–8.

    Article  CAS  Google Scholar 

  16. Blanco I, Bottino FA, Bottino P. Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2012;33(11):1903–10.

    Article  CAS  Google Scholar 

  17. Blanco I, Abate L, Bottino FA, Bottino P. Thermal behaviour of a series of novel aliphatic bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites: the influence of the bridge length on the resistance to thermal degradation. Polym Degrad Stab. 2014;102:132–7.

    Article  CAS  Google Scholar 

  18. Blanco I, Abate L, Bottino FA, Cicala G, Latteri A. Dumbbell-shaped polyhedral oligomeric silsesquioxanes/polystyrene nanocomposites: the influence of the bridge rigidity on the resistance to thermal degradation. J Compos Mater. 2015;49(20):2509–17.

    Article  CAS  Google Scholar 

  19. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stab. 2013;98(12):2564–70.

    Article  CAS  Google Scholar 

  20. Abate L, Blanco I, Cicala G, Recca G, Scamporrino A. The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones. Polym Degrad Stab. 2010;95(5):798–802.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  22. Abate L, Blanco I, Bottino FA, Di Pasquale G, Fabbri E, Orestano A, Pollicino A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91(3):681–6.

    Article  CAS  Google Scholar 

  23. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440(1):36–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, I., Bottino, F.A. Thermal characterization of a series of novel hepta cyclopentyl bridged POSS/PS nanocomposites. J Therm Anal Calorim 125, 637–643 (2016). https://doi.org/10.1007/s10973-015-5098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5098-7

Keywords

Navigation