Skip to main content
Log in

Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid composites of epoxy and phenyltrisilanol polyhedral oligomeric silsesquioxane (Ph7Si7O9(OH)3, POSS-triol) were prepared via in situ polymerization of epoxy monomers. The nanocomposites of epoxy with POSS-triol can be prepared in the presence of metal complex latent catalyst, aluminum triacetylacetonate ([Al]) for the reaction between POSS-triol and diglycidyl ether of bisphenol A (DGEBA). The dispersion morphology of organic–inorganic hybrid was characterized by scanning electronic microscopy (SEM). The thermostability of composites was evaluated by thermal gravimetric (TG) analysis. The flammability was evaluated by cone calorimeter test. The presence of [Al] latent catalyst leads to a decrease in combustion rate with respect to epoxy and epoxy/POSS composites as well as reduction in smoke, CO and CO2 production rate. The effect of [Al] is to reduce the size of spherical POSS particles from 3–5 μm in epoxy/POSS to 0.5 μm in epoxy/POSS[Al]. Furthermore, POSS with smaller size may form compact and continue char layer on the surface of composites more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu SY, Hamerton I. Recent developments in the chemistry of halogen free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  2. Whitesides GM, Mathias TP, Seto CT. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991;254:1312–9.

    Article  CAS  Google Scholar 

  3. Lan T, kaviratan PD, Pinnavaia TJ. Mechanism of clay tactoid exfoliation in epoxy–clay nanocomposites. Chem Mater. 1995;7:2144–50.

    Article  CAS  Google Scholar 

  4. Giannelis EP, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci. 1999;138:107–47.

    Article  CAS  Google Scholar 

  5. Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organomet Chem. 1998;12:707–13.

    Article  CAS  Google Scholar 

  6. Zammarano M, Franceschi M, Bellayer S, et al. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer. 2005;46(22):9314–28.

    Article  CAS  Google Scholar 

  7. Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004;45(12):4227–39.

    Article  CAS  Google Scholar 

  8. Kashiwagi T, Du FM, Douglas JF, et al. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater. 2005;4(12):928–33.

    Article  CAS  Google Scholar 

  9. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  CAS  Google Scholar 

  10. Gilman JW, Jackson CL, Morgan AB, Harris R Jr, Manias E, Giannelis EP, et al. Flammability properties of polymer-layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.

    Article  CAS  Google Scholar 

  11. Zanetti M, Camino G, Mülhaupt R. Combustion behaviour of EVA/fluorohectorite nanocomposites. Polym Degrad Stab. 2001;74:413–7.

    Article  CAS  Google Scholar 

  12. Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nano-composites enhances thermal stability. Chem Mater. 2001;13:4649–54.

    Article  CAS  Google Scholar 

  13. Zhu J, Start P, Mauritz A, Wilkie CA. Thermal stability and flame retardancy of PMMA-clay nanocomposites. Polym Degrad Stab. 2002;77:253–8.

    Article  CAS  Google Scholar 

  14. Morgan AB, Harris RH Jr, Kashiwagi T, Chyall LJ, Gilman JW. Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire Mater. 2002;26:247–53.

    Article  CAS  Google Scholar 

  15. Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR, et al. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer. 2004;45:881–91.

    Article  CAS  Google Scholar 

  16. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules. 1993;26(8):2141–2.

    Article  CAS  Google Scholar 

  17. Haddad TS, Lichtenhan JD. Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules. 1996;29(22):7302–4.

    Article  CAS  Google Scholar 

  18. Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyesters and cotton fabrics. Fire Mater. 2002;26:149–54.

    Article  CAS  Google Scholar 

  19. Ramirez C, Rico M, Barral L, Diez J, Garcia-Garabal S, Montero B. Organic/inorganic hybrid materials from an epoxy resin cured by an amine silsesquioxane. J Therm Anal Cal. 2007;87:69–72.

    Article  CAS  Google Scholar 

  20. Dell’Erba IE, Williams RJJ. Epoxy networks modified by multifunctional polyhedral oligomeric silsesquioxanes (POSS) containing amine groups. J Therm Anal Cal. 2008;93:95–100.

    Article  Google Scholar 

  21. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA (n = 0)/MXDA modified with POSS. J Therm Anal Cal. 2009;96:575–82.

    Article  CAS  Google Scholar 

  22. Fina A, Abbenhuis HCL, Tabuani D, et al. Metal functionalized POSS as fire retardants in polypropylene. Polym Degrad Stab. 2006;91:2275–81.

    Article  CAS  Google Scholar 

  23. Liu L, Hu Y, Song L, et al. Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci. 2007;42:4325–33.

    Article  CAS  Google Scholar 

  24. Jash P, Wilkie CA. Effects of surfactants on the thermal and fire properties of poly (methyl methacrylate)/clay nanocomposites. Polym Degrad Stab. 2005;88:401–6.

    Article  CAS  Google Scholar 

  25. Duquesne S, Jama C, Le Bras M, Delobel R, Recourt P, Gloaguen JM. Elaboration of EVA-nanoclay systems—characterization, thermal behaviour and fire performance. Compos Sci Technol. 2003;63:1141–8.

    Article  CAS  Google Scholar 

  26. Samyn F, Bourbigot F, Jama C, Bellayer S, Nazare S, Hull R, et al. Characterisation of the dispersion in polymer flame retarded nanocomposites. Eur Polym J. 1996;32(3):375–83.

    Article  Google Scholar 

  27. Liu HZ, Zheng SX, Nie KM. Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules. 2005;38:5088–97.

    Article  CAS  Google Scholar 

  28. Babrauskas V. Specimen heat fluxes for bench-scale heat release rate testing. Fire Mater. 1995;19:243–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuck Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Zhang, C., Liang, R. et al. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim 100, 1009–1015 (2010). https://doi.org/10.1007/s10973-009-0474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0474-9

Keywords

Navigation