Skip to main content
Log in

Synthesis and thermal characterization of monosubstituted octaphenyl POSS/polystyrene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Four novel polyhedral oligomeric silsesquioxanes/polystyrene (POSS/PS) nanocomposites, having formula R7R′1(SiO1.5)8/PS (where R = C6H5– and R′ = p-C6H4-X, with X = –CH3, –OCH3, –F, –Cl) were synthesized by in situ polymerization of styrene, in the presence of 5% w/w of POSS. The obtained nanocomposites were characterized by 1H-NMR spectroscopy and by the glass transition temperature (Tg) determination. The thermal degradations of nanocomposites were thus carried out in thermobalance, in the scanning mode, in the temperature range r.t.—700 °C, in both flowing nitrogen and static air atmospheres. Temperature at 5% mass loss (T5%) was determined as parameter measuring the resistance to thermal degradation. The obtained T5% values of nanocomposites were largely higher than those found for PS, which was also degraded for comparison in the same experimental conditions, thus indicating higher resistance to thermal degradation in respect to neat polymer. Also, the sameness of nanocomposites T5% values was interpreted and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaszas G. Basic physical properties/structure of polystyrene–polyisobutylene–polystyrene triblock copolymers. Polym Mater Sci Eng Proc ACS Div Polym Mater Sci Eng. 1993;68:325–6.

    CAS  Google Scholar 

  2. Bunz UHF. Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev. 2000;100(4):1605–44.

    CAS  PubMed  Google Scholar 

  3. Cavallaro G, De Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites: thermal properties and structure. J Therm Anal Calorim. 2013;112(1):383–9.

    CAS  Google Scholar 

  4. Catauro M, Dell’Era A, Vecchio Ciprioti S. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2–CaO–P2O5 gel and ceramic materials. Thermochim Acta. 2016;625:20–7.

    CAS  Google Scholar 

  5. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stabil. 2013;98(12):2564–70.

    CAS  Google Scholar 

  6. Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tinè MR. Thermal behavior study of pristine and modified halloysite nanotubes: a modern kinetic study. J Therm Anal Calorim. 2015;121(3):1011–9.

    CAS  Google Scholar 

  7. Catauro M, Bollino F, Papale F, Gallicchio M, Pacifico S. Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol-gel technique. Mater Sci Eng C. 2015;48:548–55.

    CAS  Google Scholar 

  8. Zhang W, Camino G, Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Progr Polym Sci. 2017;67:77–125.

    Google Scholar 

  9. Morici E, Di Bartolo A, Arrigo R, Dintcheva NT. POSS grafting on polyethylene and maleic anhydride-grafted polyethylene by one-step reactive melt mixing. Adv Polym Tech. 2018;37(2):349–57.

    CAS  Google Scholar 

  10. Abate L, Blanco I, Bottino FA, Di Pasquale G, Fabbri E, Orestano A, Pollicino A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91(3):681–6.

    CAS  Google Scholar 

  11. Leszczyńska A, Stafin K, Pagacz J, Mičušík M, Omastova M, Hebda E, Pielichowski J, Borschneck D, Rose J, Pielichowski K. The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. Ind Crops Prod. 2018;116:97–108.

    Google Scholar 

  12. Cavallaro G, Lazzara G, Konnova S, Fakhrullin R, Lvov Y. Composite films of natural clay nanotubes with cellulose and chitosan. Green Mater. 2014;2(4):232–42.

    Google Scholar 

  13. Massaro M, Lazzara G, Milioto S, Noto R, Riela S. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B. 2017;5(16):2867–82.

    CAS  Google Scholar 

  14. Harrison PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;542(2):141–83.

    CAS  Google Scholar 

  15. Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95(5):1409–30.

    CAS  Google Scholar 

  16. Illescas S, Sánchez-Soto M, Milliman H, Schiraldi DA, Arostegui A. The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-POSS composites. High Perform Polym. 2011;23(6):457–67.

    CAS  Google Scholar 

  17. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–40.

    CAS  Google Scholar 

  18. Fina A, Abbenhuis HCL, Tabuani D, Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polym Degrad Stabil. 2006;91(10):2275–81.

    CAS  Google Scholar 

  19. Wang X, Hu Y, Song L, Xing W, Lu H. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci B Polym Phys. 2010;48:693–705.

    CAS  Google Scholar 

  20. Zhang Y, Ye Z. Homogeneous polyhedral oligomeric silsesquioxane (POSS)-supported Pd-diimine complex and synthesis of polyethylenes end-tethered with a POSS nanoparticle via ethylene living polymerization. Chem Commun. 2010;2008(10):1178–80.

    Google Scholar 

  21. Zhang Y, Ye Z. Covalent surface grafting of branched polyethylenes on silica nanoparticles by surface-initiated ethylene living polymerization with immobilized 98 Pd-diimine catalysts. Macromolecules. 2008;41:6331–8.

    CAS  Google Scholar 

  22. Cheng CC, Yen YC, Ko FH, Chu CW, Fan SK, Chang FC. A new supramolecular film formed from a silsesquioxane derivative for application in proton exchange membranes. J Mater Chem. 2012;22:731–4.

    CAS  Google Scholar 

  23. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT. Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. J Electrochem Soc. 2010;157:B914–9.

    CAS  Google Scholar 

  24. Rathbone S, Furrer P, Lubben J, Zinn M, Cartmell S. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res Part A. 2010;93:1391–403.

    CAS  Google Scholar 

  25. Guo YL, Wang WS, Otaigbe JU. Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation. J Tissue Eng Regener Med. 2010;4:553–64.

    CAS  Google Scholar 

  26. Ghanbari H, Kidane AG, Burriesci G, Ramesh B, Darbyshire A, Seifalian AM. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater. 2010;6:4249–60.

    CAS  PubMed  Google Scholar 

  27. Blanco I. Polyhedral oligomeric silsesquioxanes (POSS)s in medicine. J Nanomed. 2018;1(1):1–3.

    Google Scholar 

  28. Wang X, Yang YK, Yang ZF, Zhou XP, Liao YG, Lv CC, Chang FC, Xie XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102:739–44.

    CAS  Google Scholar 

  29. Devaraju S, Vengatesan MR, Selvi M, Alagar M. Thermal and dielectric properties of newly developed linear aliphatic-ether linked bismaleimide-polyhedral oligomeric silsesquioxane (POSS-AEBMI) nanocomposites. J Therm Anal Calorim. 2014;117:1047–63.

    CAS  Google Scholar 

  30. Tanaka K, Adachi S, Chujo Y. Structure–property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A Polym Chem. 2009;47:5690–7.

    CAS  Google Scholar 

  31. Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim. 2010;100:1009–15.

    CAS  Google Scholar 

  32. Gao J, Zhu FL, Yang J, Liu X. Synthesis and curing kinetics of UV-curable waterborne bisphenol-s epoxy-acrylate/polyurethane-acrylate/methylacryloylpropyl-POSS nanocomposites. J Macromol Sci Part B Phys. 2014;53:1800–13.

    CAS  Google Scholar 

  33. Xia L, Li F, Shentu B, Weng Z. Thermal degradation behavior and flame retardancy of polycarbonate containing poly[(phenylsilsesquioxane)-co-(dimethylsiloxane)] and potassium diphenyl sulfonate. J Macromol Sci Part B Phys. 2013;52:310–8.

    CAS  Google Scholar 

  34. Blanco I, Bottino FA, Abate L. Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta. 2016;623:50–7.

    CAS  Google Scholar 

  35. Blanco I, Bottino FA, Abate L. Mono substituted octaphenyl POSSs: the effects of substituents on thermal properties and solubility. Thermochim Acta. 2017;655:117–23.

    CAS  Google Scholar 

  36. Blanco I, Bottino FA, Bottino P. Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2012;33(11):1903–10.

    CAS  Google Scholar 

  37. Blanco I, Bottino FA, Cicala G, Cozzo G, Latteri A, Recca A. Synthesis and thermal characterization of new dumbbell shaped POSS/PS nanocomposites: influence of the symmetrical structure of the nanoparticles on the dispersion/aggregation in the polymer matrix. Polym Compos. 2015;36(8):1394–400.

    CAS  Google Scholar 

  38. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440(1):36–42.

    CAS  Google Scholar 

  39. Moore BM, Ramirez SM, Yandek GR, Haddad TS, Mabry JM. Asymmetric aryl polyhedral oligomeric silsesquioxanes (ArPOSS) with enhanced solubility. J Organomet Chem. 2011;696:2676–80.

    CAS  Google Scholar 

  40. Blanco I, Bottino FA. Effect of the substituents on the thermal stability of hepta cyclopentyl, phenyl substitued-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. AIP Conf Proc. 2012;1459(1):247–9.

    CAS  Google Scholar 

  41. Badea E, Blanco I, Della Gatta G. Fusion and solid-to-solid transitions of a homologous series of alkane-α, ω-dinitriles. J Chem Thermodyn. 2007;39(10):1392–8.

    CAS  Google Scholar 

  42. Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78(7):1455–76.

    CAS  Google Scholar 

  43. Blanco I, Cicala G, Latteri A, Saccullo G, El-Sabbagh AMM, Ziegmann G. Thermal characterization of a series of lignin-based polypropylene blends. J Therm Anal Calorim. 2017;127(1):147–53.

    CAS  Google Scholar 

  44. Blanco I, Abate L, Bottino FA, Chiacchio MA. Synthesis and thermal behaviour of novel aliphatic/aromatic hepta-cyclopentyl bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites. J Inorg Organomet Polym Mater. 2015;25(6):1456–64.

    CAS  Google Scholar 

  45. Blanco I, Abate L, Bottino FA. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents on the thermal stability. J Therm Anal Calorim. 2013;112(1):421–8.

    CAS  Google Scholar 

  46. Blanco I, Abate L, Antonelli ML, Bottino FA, Bottino P. Phenyl hepta cyclopentyl—polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. eXPRESS Polym Lett. 2012;6(12):997–1006.

    CAS  Google Scholar 

  47. Blanco I. The rediscovery of POSS: a molecule rather than a filler. Polymers. 2018;10(8):904.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

Ignazio Blanco is grateful to the MIUR for the grant “Fund for basic research activities,” and to the University of Catania within the “Piano della Ricerca Dipartimentale 2016-2018” of the Department of Civil Engineering and Architecture, for supporting the project MATErials LIfe foreCAst (MATELICA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, I., Abate, L., Bottino, P. et al. Synthesis and thermal characterization of monosubstituted octaphenyl POSS/polystyrene nanocomposites. J Therm Anal Calorim 138, 2357–2365 (2019). https://doi.org/10.1007/s10973-019-08212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08212-w

Keywords

Navigation