Skip to main content
Log in

Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Damage caused by oxidative stress is involved in many types of diseases, including breast cancer. Our aim was to detect the oxidative stress parameters and blood plasma changes with differential scanning calorimetry (DSC) in breast cancer patients. The study included 40 adult breast cancer women who were grouped according to tumor diameter, regional lymph node metastases, proliferative activity, receptor status and postoperative chemotherapy. To monitor oxidative stress, malondialdehyde, oxygen free radicals (OFRs), activity of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) were measured. Denaturation of plasma components was detected in Setaram Micro DSC-II calorimeter. The total production of OFRs, the MPO activity and lipidperoxidation were significantly increased in each breast cancer patients considering the tumor size, the metastatic lymph nodes, the proliferation activity and receptor status compared with healthy controls (p < 0.05). These pro-oxidants were slightly elevated without chemotherapy, but their values were increased significantly in chemotherapy-receiving group. The activity of SOD and CAT was significantly decreased in all groups, and in regard to the chemotherapy, they were changed significantly parallel to the severity of disease. Regarding to both the increased tumor diameter and the increased number of affected lymph nodes, DSC measurements showed a strong relationship between the maximum excess heat capacity (C pmax) of the blood plasma and the severity of disease. The study demonstrated that oxidative stress is implicated in breast carcinoma and chemotherapy aggravates these changes which confirmed the plasma DSC measurements also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arató E, Kürthy M, Jancsó G, Sínay L, Kasza G, Zs Verzár, Benkő L, Cserepes B, Kollár L, Rőth E. Oxidative stress and leukocyte activation after lower limb revascularization surgery. Magy Seb. 2006;59:50–7.

    Google Scholar 

  2. Rácz B, Horváth G, Reglődi D, Gasz B, Kiss P, Gallyas F Jr, Sümegi B, Tóth G, Németh A, Lubics A, Tamás A. PACAP ameliorates oxidative stress in the chicken inner ear: an in vitro study. Regul Pept. 2010;160:91–8.

    Article  Google Scholar 

  3. Tizedes G, Sajjadi SG, Pavlovics G, Kovács GB, Horváth ŐP. Aesthetic primary bilateral breast augmentation with free deep inferior epigastric perforator flap: a case report. J Plast Reconstr Aesthet Surg. 2008;61:1552–3.

    Article  Google Scholar 

  4. Amin KA, Mohamed BM, El-Wakil MA, Ibrahem SO. Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer. 2012;15:306–12.

    Article  Google Scholar 

  5. Trueba GP, Sanchez GM, Giuliani A. Oxygen free radical and antioxidant defense mechanism in cancer. Front Biosci. 2004;9:2029–44.

    Article  Google Scholar 

  6. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  Google Scholar 

  7. Badid N, Ahmed FZ, Merzouk H, Belbraouet S, Mokhtari N, Merzouk SA, Benhabib R, Hamzaoui D, Narce M. Oxidant/antioxidant status, lipids and hormonal profile in overweight women with breast cancer. Pathol Oncol Res. 2010;16:159–67.

    Article  CAS  Google Scholar 

  8. Rőth E, Hejjel L, Jaberansari M, Jancsó G. The role of free radicals in endogenous adaptation and intracellular signals. Exp Clin Cardiol. 2004;9:13–6.

    Google Scholar 

  9. Mencalha A, Victorino VJ, Cecchini R, Panis C. Mapping oxidative changes in breast cancer: understanding the basic to reach the clinics. Anticancer Res. 2004;34:1127–40.

    Google Scholar 

  10. Nourazarian AR, Kangari P, Salmaninejad A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev. 2014;15:4745–51.

    Article  Google Scholar 

  11. Cadoo KA, Fornier MN, Morris PG. Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging. 2013;57:312–21.

    CAS  Google Scholar 

  12. Chu H-L, Chen T-H, Wu C-Y, Yang Y-C, Tseng S-H, Cheng T-M, Ho L-P, Tsai L-Y, Li H-Y, Chang C-S, Chang C-C. Thermal stability and folding kinetics analysis of disordered protein, securin. J Therm Anal Calorim. 2014;115:2171–8.

    Article  CAS  Google Scholar 

  13. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    Article  CAS  Google Scholar 

  14. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetric analysis of the plasma proteome. Semin Nephrol. 2007;27:621–6.

    Article  CAS  Google Scholar 

  15. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetry outside the box: a new window into the plasma proteome. Biophys J. 2008;94:1377–83.

    Article  CAS  Google Scholar 

  16. Michnik A, Drzazga Z, Michalik K, Barczyk A, Santura I, Sozanska E, Pierzchała W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J Therm Anal Calorim. 2010;102:57–60.

    Article  CAS  Google Scholar 

  17. Krumova S, Rukova B, Todinova S, Gartcheva L, Milanova V, Toncheva D, Taneva SG. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim Acta. 2013;572:59–64.

    Article  CAS  Google Scholar 

  18. Moezzi M, Fekecs T, Zapf I, Ferencz A, Lőrinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J Therm Anal Calorim. 2013;111:1801–4.

    Article  Google Scholar 

  19. Goralski P, Rogalinska M, Błonski JZ, Pytel E, Robak T, Kilianska ZM, Piekarski H. The differences in thermal profiles between normal and leukemic cells exposed to anticancer drug evaluated by differential scanning calorimetry. J Therm Anal Calorim. 2014;118:1339–44.

    Article  CAS  Google Scholar 

  20. Szalai Z, Rendeki S, Szántó Z, Zsoldos P, Bártfai Z, Molnár FT. Differential scanning calorimetric (DSC) examination of chronic obstructive pulmonary disease (COPD) in different severity stages. Med Thorac. 2014;67:326–33.

    Google Scholar 

  21. Fekecs T, Zapf I, Ferencz A, Lőrinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in melanoma patients with or without regional lymph node metastases. J Therm Anal Calorim. 2012;108:149–52.

    Article  CAS  Google Scholar 

  22. Fish DJ, Brewood GP, Kim JS, Garbett NC, Chaires JB, Benight AS. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys Chem. 2010;152:184–90.

    Article  CAS  Google Scholar 

  23. Todinova S, Krumova S, Gartcheva L, Robeerst C, Taneva SG. Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case. Anal Chem. 2011;83:7992–8.

    Article  CAS  Google Scholar 

  24. Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta. 2012;1820:1879–85.

    Article  CAS  Google Scholar 

  25. Garbett NC, Merchant ML, Helm CW, Jenson AB, Klein JB, Chaires JB. Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry. PLoS One. 2014;9:e84710.

    Article  Google Scholar 

  26. Fekecs T, Kádár Z, Battyáni Z, Kalmár-Nagy K, Szakály P, Horváth ŐP, Wéber G, Ferencz A. Changes in oxidative stress in patients screened for skin cancer after solid-organ transplantation. Transplant Proc. 2010;42:2336–8.

    Article  CAS  Google Scholar 

  27. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  Google Scholar 

  28. Herrera AC, Victorino VJ, Campos FC, Verenitach BD, Lemos LT, Aranome AM, Oliveira SR, Cecchini AL, Simão AN, Abdelhay E, Panis C, Cecchini R. Impact of tumor removal on the systemic oxidative profile of patients with breast cancer discloses lipid peroxidation at diagnosis as a putative marker of disease recurrence. Clin Breast Cancer. 2014;14:451–9.

    Article  CAS  Google Scholar 

  29. Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A, Sotgia F, Lisanti MP. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle. 2011;10:4065–73.

    Article  CAS  Google Scholar 

  30. Ran S, Volk L, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology. 2010;17:229–51.

    Article  Google Scholar 

  31. Semenza GL. Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 2013;32:4057–63.

    Article  CAS  Google Scholar 

  32. Palit S, Kar S, Sharma G, Das PK. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. 2014;. doi:10.1002/jcp.24818.

    Google Scholar 

  33. Singh G, Maulik SK, Jaiswal A, Kumar P, Parshad P. Effect on antioxidant levels in patients of breast carcinoma during neoadjuvant chemotherapy and mastectomy. Malays J Med Sci. 2010;17:24–8.

    Google Scholar 

  34. Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa MC, Ramirez-Tortosa CL, Granados-Principal S, Lorente JA, Quiles JL. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit Rev Oncol Hematol. 2011;80:347–68.

    Article  Google Scholar 

  35. Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res. 2013;15:5557–63.

    Article  Google Scholar 

  36. Michnik A, Drzazga Z, Kluczewska A, Michalik K. Differential scanning microcalorimetry study of the thermal denaturation of haemoglobin. Biophys Chem. 2005;118:93–101.

    Article  CAS  Google Scholar 

  37. Vega S, Garcia-Gonzalez MA, Lanas A, Velazquez-Campoy A, Abian O. Deconvolution analysis for classifying gastric adenocarcinoma patients based on differential scanning calorimetry serum thermograms. Sci Rep. 2015;5:7988.

    Article  CAS  Google Scholar 

  38. Splinter R, van Herwaarden AW, van Wetten IA, Pfreundt A, Svendsen WE. Fast differential scanning calorimetry of liquid samples with chips. Thermochim Acta. 2014;. doi:10.1016/j.tca.2014.07.013.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants OTKA CO-272 (for Dénes Lőrinczy). The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ferencz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapf, I., Moezzi, M., Fekecs, T. et al. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J Therm Anal Calorim 123, 2029–2035 (2016). https://doi.org/10.1007/s10973-015-4642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4642-9

Keywords

Navigation