Skip to main content
Log in

Thermal stability and specific heats of {[bpy][BF4] + [bpy][Tf2N]} and {[bpy][BF4] + [4bmpy][Tf2N]} mixed ionic liquid solvents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the last years, mixing ionic liquids (ILs) is a common trend looking for IL-based solvents with high extractive properties in the liquid–liquid extraction of aromatics from alkanes. The aim of mixing ILs is to find intermediate extractive properties between ILs which showed good selectivity and those with high aromatic capacity of extraction. In addition to this, there are several thermophysical properties that are of interest to evaluate an IL-based solvent. Therefore, many studies have been carried out focusing on the knowledge of density, viscosity, or surface tension behavior of IL mixture, proposing several mixing rules that could correctly predict these magnitudes from pure IL data in most of the mixtures studied. However, only a few measurements of thermal stabilities and specific heats for IL binary mixtures have been recently realized. The present study was aimed to evaluate the thermal stability of {[bpy][BF4] + [bpy][Tf2N]} and {[bpy][BF4] + [4bmpy][Tf2N]} IL mixtures by thermogravimetric analysis. Also specific heats of the IL mixtures were determined using differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rogers RD, Seddon KR. Ionic liquids-solvents of the future? Science. 2003;302:792–3.

    Article  Google Scholar 

  2. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50.

    Article  CAS  Google Scholar 

  3. Anjan ST. Ionic liquid for aromatic extraction: are they ready? Chem Eng Prog. 2006;102:30–9.

    CAS  Google Scholar 

  4. Larriba M, Navarro P, García J, Rodríguez F. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids. Ind Chem Eng Res. 2013;52:2714–20.

    Article  CAS  Google Scholar 

  5. Larriba M, Navarro P, García J, Rodríguez F. Selective extraction of toluene from n-heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents. J Chem Thermodyn. 2013;. doi:10.1016/j.jct.2013.11.005.

    Google Scholar 

  6. Marciniak A, Krolikowski M. Ternary (Liquid + liquid) equilibria of {Trifluorotris(perfluoroethyl)phosphate based ionic Liquids + Thiophene + Heptane}. J Chem Thermodyn. 2012;49:154–8.

    Article  CAS  Google Scholar 

  7. Meindersma GW, Podt AJG, de Haan AB. Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures. Fuel Process Technol. 2005;87:59–70.

    Article  Google Scholar 

  8. Meindersma GW, Hansmeier AR, de Haan AB. Ionic liquids for aromatics extraction. Present status and future outlook. Ind Eng Chem Res. 2010;49:7530–40.

    Article  CAS  Google Scholar 

  9. Alvarez-Guerra E, Irabien A. Extraction of lactoferrin with hydrophobic ionic liquids. Sep Purif Technol. 2012;98:432–40.

    Article  CAS  Google Scholar 

  10. Meindersma GW, de Haan AB. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. Sci China Chem. 2012;55:1488–99.

    Article  CAS  Google Scholar 

  11. Meindersma GW, de Haan AB. Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chem Eng Res Des. 2008;86:745–52.

    Article  CAS  Google Scholar 

  12. Farshad F, Iravaninia M, Kasiri N, Mohammadi T, Ivakpour J. Separation of toluene/n–heptane mixtures experimental, modeling and optimization. Chem Eng J. 2011;173:11–8.

    Article  CAS  Google Scholar 

  13. Larriba M, Navarro P, García J, Rodríguez F. Liquid-liquid extraction of toluene from n-heptane by [emim][TCM] + [emim][DCA] binary Ionic liquid mixtures. Fluid Phase Equilib. 2014;364:48–54.

    Article  CAS  Google Scholar 

  14. Larriba M, Navarro P, García J, Rodríguez F. Separation of toluene from n-heptane, 2,3-dimethylpentane, and cyclohexane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids as extraction solvents. Sep Purif Technol. 2013;120:392–401.

    Article  CAS  Google Scholar 

  15. García S, Larriba M, García J, Torrecilla JS, Rodríguez F. Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent. J Chem Thermodyn. 2012;53:119–24.

    Article  Google Scholar 

  16. García S, Larriba M, García J, Torrecilla JS, Rodríguez F. Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chem Eng J. 2012;180:210–5.

    Article  Google Scholar 

  17. Yalkowsky SH, Roseman TJ. Chapter 3: Solubilization of drugs by cosolvents In: Techniques of solubilization of drugs. New York: Dekker; 1981.

  18. Larriba M, García S, Navarro P, García J, Rodríguez F. Physical properties of N–butylpyridinium tetrafluoroborate and N–butylpyridinium bis(trifluoromethylsulfonyl)imide binary ionic liquid mixtures. J Chem Eng Data. 2012;57:1318–25.

    Article  CAS  Google Scholar 

  19. Larriba M, García S, Navarro P, García J, Rodríguez F. Physical characterization of an aromatic extraction solvent formed by [bpy][BF4] and [4bmpy][Tf2N] mixed ionic liquids. J Chem Eng Data. 2013;58:1496–504.

    Article  CAS  Google Scholar 

  20. Ye C, Shreeve JM. Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 2007;111:1456–61.

    Article  CAS  Google Scholar 

  21. Gardas RL, Coutinho JAP. Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib. 2008;263:26–32.

    Article  CAS  Google Scholar 

  22. Grunberg L, Nissan AH. Mixture law for viscosity. Nature. 1949;164:799–800.

    Article  CAS  Google Scholar 

  23. Bingham EC. Fluidity and plasticity. New York: McGraw-Hill; 1922.

  24. Navarro P, Larriba M, García J, Rodríguez F. Thermal stability, specific heats, and surface tensions of [emim][DCA] + [4empy][Tf2 N] ionic liquid mixtures. J Chem Thermodyn. 2014;. doi:10.1016/j.jct.2014.03.023.

    Google Scholar 

  25. Navarro P, Larriba M, García J, Rodríguez F. Thermal stability and specific heats of [emim][DCA] + [emim][TCM] mixed ionic liquid. Thermochim Acta. 2014;. doi:10.1016/j.tca.2014.04.026.

    Google Scholar 

  26. Navarro P, Larriba M, Rojo E, García J, Rodríguez F. Thermal properties of cyano-based ionic liquids. J Chem Eng Data. 2013;58:2187–93.

    Article  CAS  Google Scholar 

  27. Fernández A, Torrecilla JS, García J, Rodríguez F. Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J Chem Eng Data. 2007;52:1979–83.

    Article  Google Scholar 

  28. Prasad MRR, Sudhakarbabu K. Thermal decomposition of tetraethyl ammonium tetrafluoroborate. J Therm Anal Calorim. 2014;115:1901–5.

    Article  CAS  Google Scholar 

  29. Seeberger A, Andresen AK, Jess A. Prediction of long-term stability of ionic liquids at elevated temperatures by means of non-isothermal thermogravimetrical analysis. Phys Chem Chem Phys. 2009;11:9375–81.

    Article  CAS  Google Scholar 

  30. Aparicio S, Atilhan M, Karadas F. Thermophysical properties of pure ionic liquids: review of present situation. Ind Eng Chem Res. 2010;49:9580–95.

    Article  CAS  Google Scholar 

  31. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data. 2004;49:954–64.

    Article  CAS  Google Scholar 

  32. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn. 2005;37:559–68.

    Article  CAS  Google Scholar 

  33. Sattari M, Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH, Ramjugernath D. Development of a group contribution method for the estimation of heat capacities of ionic liquids. J Therm Anal Calorim. 2014;115:1863–82.

    Article  CAS  Google Scholar 

  34. Gharagheizi F, Keshavarz MH, Ilani-Kashkouli P, Farahani N, Tumba K. A group contribution method for estimation of glass-transition temperature of 1,3-dialkylimidazolium ionic liquids. J Therm Anal Calorim. 2013;114:1639–48.

    Article  Google Scholar 

  35. Mousavisafavi SM, Gharagheizi F, Mirkhani SA, Akbari J. A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids. Part 2. The nonlinear approach. J Therm Anal Calorim. 2013;111:1363–82.

    Google Scholar 

  36. Redlich O, Kister AT. Thermodynamics of nonelectrolyte solutions. Ing Eng Res. 1948;40:345–8.

    Article  Google Scholar 

  37. ASTM International. ASTM E 1269–01. Standard test method for determining specific heat capacity by differential scanning calorimetry. 2001.

  38. Verevkin SP, Ralys RV, Emel’yanenko VN, Zaitsau DH, Schick C. Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids. J Therm Anal Calorim. 2013;112:353–8.

    Article  CAS  Google Scholar 

  39. Zhang ZH, Sun ZH, Tan ZC, Xu F, Lu XC, Zeng JL, Sawada Y. Thermodynamic investigation of room temperature ionic liquid heat capacity and thermodynamic functions of BPYBF4. J Therm Anal Calorim. 2007;89:289–94.

    Article  CAS  Google Scholar 

  40. Diedrichs A, Gmehling J. Measurements of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib. 2006;244:68–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministerio de Economía y Competitividad of Spain and the Comunidad de Madrid for financial support of Projects CTQ2011-23533 and S2009/PPQ-1545, respectively. Pablo Navarro thanks Ministerio de Economía y Competitividad of Spain for awarding him an FPI grant (Reference BES-2012-052312). Marcos Larriba also thanks Ministerio de Educación, Cultura y Deporte of Spain for awarding him an FPU grant (Reference AP2010-0318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, P., Larriba, M., Beigbeder, JB. et al. Thermal stability and specific heats of {[bpy][BF4] + [bpy][Tf2N]} and {[bpy][BF4] + [4bmpy][Tf2N]} mixed ionic liquid solvents. J Therm Anal Calorim 119, 1235–1243 (2015). https://doi.org/10.1007/s10973-014-4220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4220-6

Keywords

Navigation