Skip to main content
Log in

Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We applied DSC for the determination of enthalpies of synthesis reactions of pyridinium- and pyrrolidinium-based ionic liquids (ILs) from pyridine (or N-methyl-pyrrolidine) and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of enthalpies of the formation and vaporization enthalpies of ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verevkin SP, Emelyanenko VN, Zaitsau DZ, Ralys RV, Schick CH. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies. J Phys Chem B. 2012;116:4276–85.

    Article  CAS  Google Scholar 

  2. Paulechka YU. Heat capacity of room-temperature ionic liquids: a critical review. J Phys Chem Ref Data. 2010;39(3):1–033108.

    Article  Google Scholar 

  3. Paulechka YU, Kabo AG, Blokhin AV. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids. J Phys Chem B. 2009;113:14742–6.

    Article  CAS  Google Scholar 

  4. Holbrey JD, Reichert WM, Reddy RG, Rogers RD. In: Rogers RD, Seddon KR, editors. Ionic liquids as green solvents: progress and prospects. ACS Symposium Series, vol 856. New York: American Chemical Society; 2003.

  5. Frisch MJ, et al. Gaussian 09. Pittsburgh: Gaussian, Inc.; 2009.

    Google Scholar 

  6. Emel’yanenko VN, Verevkin SP, Heintz A. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J Am Chem Soc. 2007;129:3930–7.

    Article  Google Scholar 

  7. Montgomery JA, Frisch MJ Jr, Ochterski JW, Petersson GA. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys. 2000;112:6532–42.

    Article  CAS  Google Scholar 

  8. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA. Gaussian-3 theory using reduced Møller–Plesset order. J Chem Phys. 1999;110:4703–9.

    Article  CAS  Google Scholar 

  9. McQuarrie DA. Statistical mechanics. New York: Harper & Row; 1976.

    Google Scholar 

  10. Verevkin SP, Zaitsau Dz, Emel’yanenko VN, Ralys RV, Schick Ch, Geppert-Rybczyńska M, Jayaramanb S, Maginn EJ. Benchmark values: thermochemistry of the ionic liquid [C4Py][Cl]. Aust J Chem. 2012, accepted.

  11. Glasser L, Jenkins HDB. Lattice energies and unit cell volumes of complex ionic solids. J Am Chem Soc. 2000;122:632–8.

    Article  CAS  Google Scholar 

  12. Slattery J, Daguenet C, Dyson P, Krossing I, Weingärtner H, Oleinikova A. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc. 2006;128:13427–34.

    Article  Google Scholar 

  13. Glasser L, von Szentpály L. Born–Haber–Fajans cycle generalized: linear energy relation between molecules, crystals, and metals. J Am Chem Soc. 2006;128:12314–21.

    Article  CAS  Google Scholar 

  14. Ohlinger WS, Klunzinger PE, Deppmeier BJ, Hehre WJH. Efficient calculation of heats of formation. J Phys Chem A. 2009;113:2165–75.

    Article  CAS  Google Scholar 

  15. Hubbard WN, Frow FR, Waddington G. The heats of combustion and formation of pyridine and hippuric acid. J Phys Chem. 1961;65:1326–8.

    Article  CAS  Google Scholar 

  16. Wadso I. Heats of vaporization of organic compounds II. Chlorides, bromides, and iodides. Acta Chem Scand. 1968;22:2438–44.

    Article  CAS  Google Scholar 

  17. Emel’yanenko VN, Verevkin SP, Heintz A, Schick C. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J Phys Chem B. 2008;112:8095–8.

    Article  Google Scholar 

  18. Shehatta I. Heat capacity at constant pressure of some halogen compounds. Thermochim Acta. 1993;213:1–10.

    Article  CAS  Google Scholar 

  19. Blokhin AV, Shaplov AS, Lozinskaya EI, Vygodskii YaS. Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. J Chem Thermodyn. 2007;39(1):158–66.

    Article  Google Scholar 

  20. Kabo GJ, Paulechka YU, Kabo AG, Blokhin AV. Experimental determination of enthalpy of 1-butyl-3-methylimidazolium iodide synthesis and prediction of enthalpies of formation for imidazolium ionic liquids. J Chem Thermodyn. 2010;42:1292–7.

    Article  CAS  Google Scholar 

  21. Emel’yanenko VN, Verevkin SP, Heintz A, Corfield JA, Deyko A, Lovelock KRJ, Licence P, Jones RG. Pyrrolidinium-based ionic liquids. 1-Butyl-1-methyl pyrrolidinium dicyanoamide: thermochemical measurement, mass spectrometry, and ab initio calculations. J Phys Chem B. 2008;112:11734–42.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Science Foundation (DFG) in the frame of the priority program SPP 1191 “Ionic Liquids”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Verevkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verevkin, S.P., Ralys, R.V., Emel’yanenko, V.N. et al. Thermochemistry of the pyridinium- and pyrrolidinium-based ionic liquids. J Therm Anal Calorim 112, 353–358 (2013). https://doi.org/10.1007/s10973-012-2725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2725-4

Keywords

Navigation