Skip to main content
Log in

Protein denaturation kinetic processes of a simple and a complex reaction mechanism analyzed by an iso-conversional method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The protein denaturation kinetic processes of a simple and a complex reaction mechanism represented by bovine serum albumin and hen egg-white lysozyme were analyzed by an iso-conversional method using differential scanning calorimetry. After differential scanning calorimetry using the iso-conversional method, the results were found to pose distinct contrasts between the two proteins. Bovine serum albumin showed an increasing peak temperature of the transition as the scan rate and protein concentration increased, whereas hen egg-white lysozyme exhibited almost constant peak temperature. The differential scanning calorimetry transition of bovine serum albumin was calorimetrically irreversible, while one part of hen egg-white lysozyme denaturation process was irreversible during which aggregation occurred and the other part was reversible. The iso-conversional method indicated that the value of bovine serum albumin apparent activation energy hardly varied with the degree of conversion, which showed that the denaturation kinetic process should conform to single reaction model. Using the master plots method, the most possible kinetic model for bovine serum albumin denaturation might be described by F n kinetic model. On the contrary, the hen egg-white lysozyme value of apparent activation energy decreased with the increase of degree of conversion. It was not a process involving the two standard reversible states, and can be described by the simple Lumry–Eyring model. The iso-conversional method provides new opportunities in exploring a simple and a complex reaction mechanism of protein denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grillo AO, Edwards KLT, Kashi RS, Shipley KM, Hu L, Besman MJ, Middaugh CR. Conformational origin of the aggregation of recombinant human factor VIII. Biochemistry. 2001;40:586–95.

    Article  CAS  Google Scholar 

  2. Finke JM, Roy M, Zimm BH, Jennings PA. Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1 beta. Biochemistry. 2000;39:575–83.

    Article  CAS  Google Scholar 

  3. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky V, Fink AL. Effect of environmental factors on the kinetics of insulin fibril formation: Elucidation of the molecular mechanism. Biochemistry. 2001;40:6036–46.

    Article  CAS  Google Scholar 

  4. Guo JX, Harn N, Robbins A, Dougherty R, Middaugh CR. Stability of helix-rich proteins at high concentrations. Biochemistry. 2006;45:8686–96.

    Article  CAS  Google Scholar 

  5. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.

    Article  CAS  Google Scholar 

  6. Matheus S, Friess W, Mahler HC. FTIR and nDSC as analytical tools for high-concentration protein formulations. Pharm Res. 2006;23:1350–63.

    Article  CAS  Google Scholar 

  7. Farber P, Darmawan H, Sprules T, Mittermaier A. Analyzing protein folding cooperativity by differential scanning calorimetry and NMR spectroscopy. J Am Chem Soc. 2010;132:6214–22.

    Article  CAS  Google Scholar 

  8. Wu FG, Luo JJ, Yu ZW. Unfolding and refolding details of lysozyme in the presence of beta-casein micelles. Phys Chem Chem Phys. 2011;13:3429–36.

    Article  CAS  Google Scholar 

  9. Hédoux A, Willart JF, Ionov R, Affouard F, Guinet Y, Paccou L, et al. Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from raman scattering and differential scanning calorimetry investigations. J Phys Chem B. 2006;110:22886–93.

    Google Scholar 

  10. Hédoux A, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, Descamps M. Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B. 2009;13:6119–26.

    Google Scholar 

  11. Czarnik-Matusewicz B, Kim SB, Jung YM. A study of urea-dependent denaturation of beta-lactoglobulin by principal component analysis and two-dimensional correlation spectroscopy. J Phys Chem B. 2009;113:559–66.

    CAS  Google Scholar 

  12. Guo L, Park J, Lee T, Chowdury P, Lim M, Gai F. Probing the role of hydration in the unfolding transitions of carbonmonoxy myoglobin and apomyoglobin. J Phys Chem B. 2009;113:6158–63.

    CAS  Google Scholar 

  13. Furlan LTR, Lecot J, Padilla AP, Campderros ME, Zaritzky N. Stabilizing effect of saccharides on bovine plasma protein: a calorimetric study. Meat Sci. 2012;91:478–85.

    Article  Google Scholar 

  14. Dickow JA, Kaufmann N, Wiking L, Hammershoj M. Protein denaturation and functional properties of lenient steam injection heat treated whey protein concentrate. Innov Food Sci Emerg. 2012;13:178–83.

    Article  CAS  Google Scholar 

  15. Li SJ, Wei YM, Fang YQ, Zhang W, Zhang B. DSC study on the thermal properties of soybean protein isolates/corn starch mixture. J Therm Anal Calorim. 2014;115(2):1633–8.

    Article  CAS  Google Scholar 

  16. Kotelnikov GV, Moiseeva SP, Burova TV, Grinberg NV, Mashkevich AY, Dubovik AS, Grinberg VY. High-sensitivity modulation differential scanning calorimetry of protein Denaturation. J Therm Anal Calorim. 2013;114(2):531–6.

    Article  CAS  Google Scholar 

  17. Noet LG, Naumov I, Vamhidy L, Lorinczy D, Wiegand N. Comparison of thermal characteristics of degenerated and inflamed human collagen structures with differential scanning calorimetry. J Therm Anal Calorim. 2013;113(1):273–9.

    Article  Google Scholar 

  18. Michnik A, Polaczek-Grelik K, Lesniak P, Drzazga Z. Effects of low-dose ionizing radiation on alpha, beta-globulins solutions studied by DSC. J Therm Anal Calorim. 2013;111(3):1845–52.

    Article  CAS  Google Scholar 

  19. Fontanari GG, Martins JM, Kobelnik M, Pastre IA, AreasJ AG, Batistuti JP, Fertonani FL. Thermal studies on protein isolates of white lupin seeds (Lupinus albus). J Therm Anal Calorim. 2012;108(1):141–8.

    Article  CAS  Google Scholar 

  20. Despa F, Orgill DP, Lee RC. Effects of crowding on the thermal stability of heterogeneous protein solutions. Ann Biomed Eng. 2005;33(8):1125–31.

    Article  Google Scholar 

  21. Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by iso-conversional method. Macromol Biosci. 2007;7:1181–6.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.

    CAS  Google Scholar 

  23. Vyazovkin S, Wight CA. Model free and model fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  24. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  25. Tang WJ, Wang CX, Chen DH. An investigation of the pyrolysis kinetics of some aliphatic amino acids. J Anal Appl Pyrolysis. 2006;75:49–53.

    Article  CAS  Google Scholar 

  26. Cao XM, Tian Y, Wang ZhY, Liu YW, Wang CX. BSA denaturation in the absence and the presence of urea studied by the iso-conversional method and the master plots method. J Therm Anal Calorim. 2010;102:75–81.

    Article  CAS  Google Scholar 

  27. Hatakeyama T, Quinn FX. Thermal analysis fundamentals and applications to polymer science. 2nd ed. England: Wiley; 1999.

    Google Scholar 

  28. Toledo M, Software option of STARe Software, DSC Evaluations 13 conversion determination 13-403 Mettler-Toledo GmbH 1993-2002 ME-709319G Printed in Switzerland, 0209/31. 12.

  29. Klibanov AM, Ahern TJ. Thermal stability of proteins. In: Oxender DL, Fox CF, editors. Protein engineering. New York: Alan R. Liss; 1987. p. 213–8.

  30. Hoffmann MAM, Roefs SPFM, Verheul M, v Mil PJJM, de Kruif CG. Aggregation of b-lactoglobulin studied by in situ light scattering. J Dairy Res. 1996;63:423–40.

    Article  Google Scholar 

  31. Alting AC, Hamer RJ, de Kruif CG, Visschers RW. Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate. J Agric Food Chem. 2000;48:5001–7.

    Article  CAS  Google Scholar 

  32. Potekhin SA, Kovrigin EL. Folding under inequilibrium conditions as a possible reason for partial irreversibility of heat-denatured proteins: computer simulation study. Biophys Chem. 1998;73(3):241–8.

    Article  CAS  Google Scholar 

  33. Weijers M, Barneveld PA, Stuart MAC, Visschers RW. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein Sci. 2003;12:2693–703.

    Article  CAS  Google Scholar 

  34. Stirpe A, Guzzi R, Wijma H, Verbeet M P h, Canters GW, Sportelli L. Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase. Biochim Biophys Acta. 2005;1752:47–55.

    Article  CAS  Google Scholar 

  35. Bon CL, Nicolai T, Durand D. Kinetics of aggregation and gelation of globular proteins after heat-Induced denaturation. Macromolecules. 1999;32:6120–7.

    Article  Google Scholar 

  36. Opfermann JR, Flammersheim HJ. Some comments to the paper of J.D. Sewry and M.E. Brown: “model-free” kinetic analysis? Thermochim Acta. 2003;397:1–3.

    Article  CAS  Google Scholar 

  37. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58:110–20.

    CAS  Google Scholar 

  38. Sanchez-Ruiz JM. Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophys J. 1992;61:921–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 20373050 and 30600116), the Natural Science Foundation of Hubei, and the China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Tian, Y., Wang, Z. et al. Protein denaturation kinetic processes of a simple and a complex reaction mechanism analyzed by an iso-conversional method. J Therm Anal Calorim 117, 1489–1495 (2014). https://doi.org/10.1007/s10973-014-3872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3872-6

Keywords

Navigation