Skip to main content
Log in

FTIR and nDSC as Analytical Tools for High-Concentration Protein Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the study is to evaluate Fourier-transform infrared spectroscopy (FTIR) as an analytical tool for high-concentrated protein formulations.

Methods

FTIR is used to determine the melting temperature (T m (FTIR)) of various proteins, such as bovine serum albumin (BSA), immunoglobulin (IgG1), β-lactoglobulin (β-LG), and lysozyme (HEWL), at different protein concentrations (5–100 mg/mL), where four data interpretation methods are discussed. The obtained T m (FTIR) values are further compared to the T m measured by the nanodifferential scanning calorimetry (nDSC) technique.

Results

The T m (FTIR) values of IgG1 and β-LG showed strong consistency and corresponded to the nDSC results irrespective of the method of data interpretation and the protein concentration applied. In contrast, the T m (FTIR) of BSA and HEWL is characterized by significant deviations. Only the midpoint of the second-derivative intensity–temperature curve of the intermolecular β-sheet mode measured at a concentration of 100 mg/mL is consistent with the nDSC results.

Conclusions

Determination of a T m (FTIR) is feasible by the midpoint of the intensity–temperature plot of the arising intermolecular β-sheet band. More significant results are obtained for proteins, which are predominantly composed of intramolecular β-sheet elements as well as at higher protein concentrations. A further study was started to assess the predictability of long-term protein stability by T m (FTIR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. K. Pavlou M. J. Belsey (2005) ArticleTitleThe therapeutic antibodies market to 200 Eur. J. Pharm. Biopharm. 59 389–396 Occurrence Handle15760719 Occurrence Handle10.1016/j.ejpb.2004.11.007

    Article  PubMed  Google Scholar 

  2. S. J. Shire Z. Shakrokh J. Liu (2004) ArticleTitleChallenges in the development of high protein concentration formulations J. Pharm. Sci. 93 1390–1402 Occurrence Handle15124199 Occurrence Handle1:CAS:528:DC%2BD2cXks12iurY%3D Occurrence Handle10.1002/jps.20079

    Article  PubMed  CAS  Google Scholar 

  3. J. L. Cleland M. F. Powell S. J. Shire (1993) ArticleTitleThe development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation Crit. Rev. Ther. Drug Carr. Syst. 10 307–377 Occurrence Handle1:CAS:528:DyaK2cXhsVektro%3D

    CAS  Google Scholar 

  4. M. C. Manning K. Patel R. T. Borchardt (1989) ArticleTitleStability of protein pharmaceuticals Pharm. Res. 6 903–918 Occurrence Handle2687836 Occurrence Handle1:CAS:528:DyaK3cXkt1aruw%3D%3D Occurrence Handle10.1023/A:1015929109894

    Article  PubMed  CAS  Google Scholar 

  5. W. Wang (1999) ArticleTitleInstability, stabilization, and formulation of liquid protein pharmaceuticals Int. J. Pharm. 185 129–188 Occurrence Handle10460913 Occurrence Handle1:CAS:528:DyaK1MXltlCks7s%3D Occurrence Handle10.1016/S0378-5173(99)00152-0

    Article  PubMed  CAS  Google Scholar 

  6. W. Wang (2005) ArticleTitleProtein aggregation and its inhibition in biopharmaceutics Int. J. Pharm. 289 1–30 Occurrence Handle15652195 Occurrence Handle1:CAS:528:DC%2BD2MXisFKjsg%3D%3D Occurrence Handle10.1016/j.ijpharm.2004.11.014

    Article  PubMed  CAS  Google Scholar 

  7. R. Harris S. J. Shire C. Winter (2004) ArticleTitleCommercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies Drug Dev. Res. 61 137–154 Occurrence Handle1:CAS:528:DC%2BD2cXms1Gmtr0%3D Occurrence Handle10.1002/ddr.10344

    Article  CAS  Google Scholar 

  8. S. Y. Patro E. Freund B. S. Chang (2002) ArticleTitleProtein formulation and fill-finish operations Biotechnol. Annu. Rev. 8 55–84 Occurrence Handle12436915 Occurrence Handle1:CAS:528:DC%2BD38Xns1OntLs%3D

    PubMed  CAS  Google Scholar 

  9. V. N. Uversky J. Li A. L. Fink (2001) ArticleTitleEvidence for a partially folded intermediate in alpha-synuclein fibril formation J. Biol. Chem. 276 10737–10744 Occurrence Handle11152691 Occurrence Handle1:CAS:528:DC%2BD3MXjvFCqtLs%3D Occurrence Handle10.1074/jbc.M010907200

    Article  PubMed  CAS  Google Scholar 

  10. D. B. Volkin G. Sanyal C. J. Burke C. R. Middaugh (2002) Preformulation studies as an essential guide to formulation development and manufacture of protein pharmaceuticals S. L. Nail M. J. Akers (Eds) Development and Manufacture of Protein Pharmaceuticals Kluwer Academic/Plenum Publishers New York 1–46

    Google Scholar 

  11. C. N. Pace, B. A. Shirley, and J. A. Thomson. Measuring the conformational stability of a protein. In: Protein Structure, 1989, pp. 311–330.

  12. J. T. Pelton L. R. McLean (2000) ArticleTitleSpectroscopic methods for analysis of protein secondary structure Anal. Biochem. 277 167–176 Occurrence Handle10625503 Occurrence Handle1:CAS:528:DC%2BD3cXhs1WgtA%3D%3D Occurrence Handle10.1006/abio.1999.4320

    Article  PubMed  CAS  Google Scholar 

  13. E. A. Cooper K. Knutson (1995) Fourier transform infrared spectroscopy investigations of protein structure J. N. Herron W. Jiskoot D. J. Crommelin (Eds) Physical Methods to Characterize Pharmaceutical Proteins Plenum Press New York 101

    Google Scholar 

  14. W. Surewicz H. Mantsch D. Chapmann (1993) ArticleTitleDetermination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment Biochemistry 32 389–394 Occurrence Handle8422346 Occurrence Handle1:CAS:528:DyaK3sXjsFahtQ%3D%3D Occurrence Handle10.1021/bi00053a001

    Article  PubMed  CAS  Google Scholar 

  15. J. F. Carpenter J. H. Crowe (1989) ArticleTitleAn infrared spectroscopic study of the interactions of carbohydrates with dried proteins Biochemistry 28 3916–3922 Occurrence Handle2526652 Occurrence Handle1:CAS:528:DyaL1MXhvVyksrY%3D Occurrence Handle10.1021/bi00435a044

    Article  PubMed  CAS  Google Scholar 

  16. J. F. Carpenter S. J. Prestrelski A. Dong (1998) ArticleTitleApplication of infrared spectroscopy to development of stable lyophilized protein formulations Eur. J. Pharm. Biopharm. 45 231–238 Occurrence Handle9653627 Occurrence Handle1:CAS:528:DyaK1cXksVagtLk%3D Occurrence Handle10.1016/S0939-6411(98)00005-8

    Article  PubMed  CAS  Google Scholar 

  17. H. R. Costantino K. Griebenow P. Mishra R. Langer A. M. Klibanov (1995) ArticleTitleFourier-transform infrared spectroscopic investigation of protein stability in the lyophilized form Biochim. Biophys. Acta 1253 69–74 Occurrence Handle7492602

    PubMed  Google Scholar 

  18. A. Dong S. J. Prestrelski S. D. Allison J. F. Carpenter (1995) ArticleTitleInfrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation J. Pharm. Sci. 84 415–424 Occurrence Handle7629730 Occurrence Handle1:CAS:528:DyaK2MXksVygt74%3D

    PubMed  CAS  Google Scholar 

  19. K. Griebenow A. M. Klibanov (1995) ArticleTitleLyophilization-induced reversible changes in the secondary structure of proteins Proc. Natl. Acad. Sci. USA 92 10969–10976 Occurrence Handle7479920 Occurrence Handle1:CAS:528:DyaK2MXps1alsr4%3D Occurrence Handle10.1073/pnas.92.24.10969

    Article  PubMed  CAS  Google Scholar 

  20. S. J. Prestrelski K. A. Pikal T. Arakawa (1995) ArticleTitleOptimization of lyophilization conditions for recombinant human interleukin-2 by dried-state conformational analysis using Fourier-transform infrared spectroscopy Pharm. Res. 12 1250–1259 Occurrence Handle8570516 Occurrence Handle1:CAS:528:DyaK2MXpslOit70%3D Occurrence Handle10.1023/A:1016296801447

    Article  PubMed  CAS  Google Scholar 

  21. S. J. Prestrelski N. Tedeschi T. Arakawa J. F. Carpenter (1993) ArticleTitleDehydration-induced conformational transitions in proteins and their inhibition by stabilizers Biophys. J. 65 661–671 Occurrence Handle7693001 Occurrence Handle1:CAS:528:DyaK2cXntFyrtw%3D%3D Occurrence Handle10.1016/S0006-3495(93)81120-2

    Article  PubMed  CAS  Google Scholar 

  22. M. Maury K. Murphy S. Kumar A. Mauerer G. Lee (2005) ArticleTitleSpray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G Eur. J. Pharm. Biopharm. 59 251–261 Occurrence Handle15661497 Occurrence Handle1:CAS:528:DC%2BD2MXmtlCqtw%3D%3D Occurrence Handle10.1016/j.ejpb.2004.07.010

    Article  PubMed  CAS  Google Scholar 

  23. S. Schüle T. Schultz-Fadenrecht S. Bassarab K. Bechtold-Peters W. Friess P. Garidel (2004) ArticleTitleDetermination of the secondary protein structure of IgG1 antibody formulations for spray drying Respir. Drug Deliv. IX 377–380

    Google Scholar 

  24. J. Wang K. M. Chua C. H. Wang (2004) ArticleTitleStabilization and encapsulation of human immunoglobulin G into biodegradable microspheres J. Colloid Interface Sci. 271 92–101 Occurrence Handle14757081 Occurrence Handle1:CAS:528:DC%2BD2cXmtFeltQ%3D%3D Occurrence Handle10.1016/j.jcis.2003.08.072

    Article  PubMed  CAS  Google Scholar 

  25. A. Wittemann M. Ballauff (2004) ArticleTitleSecondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy Anal. Chem. 76 2813–2819 Occurrence Handle15144192 Occurrence Handle1:CAS:528:DC%2BD2cXjtVSqt7c%3D Occurrence Handle10.1021/ac0354692

    Article  PubMed  CAS  Google Scholar 

  26. C. M. Dobson (2004) ArticleTitleExperimental investigation of protein folding and misfolding Methods 34 4–14 Occurrence Handle15283911 Occurrence Handle1:CAS:528:DC%2BD2cXmt1Cgtbo%3D Occurrence Handle10.1016/j.ymeth.2004.03.002

    Article  PubMed  CAS  Google Scholar 

  27. A. Dong B. F. Kendrick L. Kreilgard J. Matsuura M. C. Manning J. F. Carpenter (1997) ArticleTitleSpectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution Arch. Biochem. Biophys. 347 213–220 Occurrence Handle9367527 Occurrence Handle1:CAS:528:DyaK2sXns1yksL4%3D Occurrence Handle10.1006/abbi.1997.0349

    Article  PubMed  CAS  Google Scholar 

  28. R. Moritz D. Reinstädler H. Fabian D. Naumann (2002) ArticleTitleTime-resolved FTIR difference spectroscopy as tool for investigating refolding reactions of ribonuclease T1 synchronized with trans cis prolyl isomerization Biopolymers (Biospectroscopy) 67 145–155 Occurrence Handle1:CAS:528:DC%2BD38Xjs1KksLk%3D Occurrence Handle10.1002/bip.10083

    Article  CAS  Google Scholar 

  29. N. Takeda M. Kato Y. Taniguchi (1995) ArticleTitlePressure- and thermally-induced reversible changes in the secondary structure of ribonuclease A studied by FT-IR spectroscopy Biochemistry 34 5980–5987 Occurrence Handle7727454 Occurrence Handle1:CAS:528:DyaK2MXltVyht7o%3D Occurrence Handle10.1021/bi00017a027

    Article  PubMed  CAS  Google Scholar 

  30. A. Dong T. W. Randolph J. F. Carpenter (2000) ArticleTitleEntrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride J. Biol. Chem. 275 27689–27693 Occurrence Handle10871628 Occurrence Handle1:CAS:528:DC%2BD3cXmsVKlurY%3D

    PubMed  CAS  Google Scholar 

  31. A. A. Ismail H. H. Mantsch P. T. Wong (1992) ArticleTitleAggregation of chymotrypsinogen: portrait by infrared spectroscopy Biochim. Biophys. Acta 1121 183–188 Occurrence Handle1599940 Occurrence Handle1:CAS:528:DyaK38XksVemsLw%3D

    PubMed  CAS  Google Scholar 

  32. V. Militello C. Casarino A. Emanuele A. Giostra F. Pullara M. Leone (2004) ArticleTitleAggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering Biophys. Chem. 107 175–187 Occurrence Handle14962598 Occurrence Handle1:CAS:528:DC%2BD2cXhtFChsL8%3D Occurrence Handle10.1016/j.bpc.2003.09.004

    Article  PubMed  CAS  Google Scholar 

  33. J. L. R. Arrondo A. Muga J. Castresana F. M. Goni (1993) ArticleTitleQuantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy Prog. Biophys. Mol. Biol. 59 23–56 Occurrence Handle8419985 Occurrence Handle1:CAS:528:DyaK3sXns1ehtA%3D%3D Occurrence Handle10.1016/0079-6107(93)90006-6

    Article  PubMed  CAS  Google Scholar 

  34. A. Dong J. Matsuura S. D. Allison E. Chrisman M. C. Manning J. F. Carpenter (1996) ArticleTitleInfrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B Biochemistry 35 1450–1457 Occurrence Handle8634275 Occurrence Handle1:CAS:528:DyaK28XjvFWlsw%3D%3D Occurrence Handle10.1021/bi9518104

    Article  PubMed  CAS  Google Scholar 

  35. R. Krishnamurthy M. C. Manning (2002) ArticleTitleThe stability factor: Importance in formulation development Curr. Pharm. Biotechnol. 3 361–371 Occurrence Handle12463418 Occurrence Handle1:CAS:528:DC%2BD38XovF2qsbw%3D Occurrence Handle10.2174/1389201023378229

    Article  PubMed  CAS  Google Scholar 

  36. D. B. Volkin C. R. Middaugh (2003) The effect of temperature on protein structure T. J. Ahern M. C. Manning (Eds) Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation Plenum Press New York 215–247

    Google Scholar 

  37. B. F. Kendrick A. Dong S. D. Allison M. C. Manning J. F. Carpenter (1996) ArticleTitleQuantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states J. Pharm. Sci. 85 155–158 Occurrence Handle8683440 Occurrence Handle1:CAS:528:DyaK28XjtFyisg%3D%3D Occurrence Handle10.1021/js950332f

    Article  PubMed  CAS  Google Scholar 

  38. M. Weert Particlevan de P. I. Haris W. E. Hennink D. J. A. Crommelin (2001) ArticleTitleFourier transform infrared spectrometric analysis of protein conformation: effect of sampling method and stress factors Anal. Biochem. 297 160–169 Occurrence Handle11673883 Occurrence Handle10.1006/abio.2001.5337 Occurrence Handle1:CAS:528:DC%2BD3MXnslWgs7w%3D

    Article  PubMed  CAS  Google Scholar 

  39. W. J. Becktel J. A. Schellmann (1987) ArticleTitleProtein stability curves Biopolymers 26 1859–1877 Occurrence Handle3689874 Occurrence Handle1:CAS:528:DyaL1cXntVykug%3D%3D Occurrence Handle10.1002/bip.360261104

    Article  PubMed  CAS  Google Scholar 

  40. M. Cauchy S. D'Aoust B. Dawson H. Rode M. A. Hefford (2002) ArticleTitleThermal stability: a means to assure tertiary structure in therapeutic proteins Biologicals 30 175–185 Occurrence Handle12217342 Occurrence Handle1:CAS:528:DC%2BD38Xms1WltL8%3D Occurrence Handle10.1006/biol.2002.0322

    Article  PubMed  CAS  Google Scholar 

  41. R. L. Remmele SuffixJr. W. R. Gombotz (2000) ArticleTitleDifferential scanning calorimetry: a practical tool for elucidating the stability of liquid biopharmaceuticals Biopharm. Europe 13 56–65

    Google Scholar 

  42. P. M. Bummer S. Koppenol (2000) Chemical and physical considerations in protein and peptide stability E. J. McNally (Eds) Protein Formulation and Delivery Marcel Dekker Inc. New York 5–69

    Google Scholar 

  43. A. D. Robertson K. P. Murphy (1997) ArticleTitleProtein structure and the energetics of protein stability Chem. Rev. 97 1251–1267 Occurrence Handle11851450 Occurrence Handle1:CAS:528:DyaK2sXksFSisLY%3D Occurrence Handle10.1021/cr960383c

    Article  PubMed  CAS  Google Scholar 

  44. T. Chen D. M. Oakley (1995) ArticleTitleThermal analysis of proteins of pharmaceutical interest Thermochim Acta 248 229–244 Occurrence Handle1:CAS:528:DyaK2MXivVOrt70%3D Occurrence Handle10.1016/0040-6031(94)01892-K

    Article  CAS  Google Scholar 

  45. V. L. Shnyrov J. M. Sanchez-Ruiz B. N. Boiko G. Zhadan E. A. Permyakov (1997) ArticleTitleApplications of scanning microcalorimetry in biophysics and biochemistry Thermochim. Acta 302 165–180 Occurrence Handle10.1016/S0040-6031(97)00238-4

    Article  Google Scholar 

  46. P. L. Privalov S. A. Potekhin (1986) ArticleTitleScanning microcalorimetry in studying temperature-induced changes in proteins Methods Enzymol. 131 4–50 Occurrence Handle3773768 Occurrence Handle1:CAS:528:DyaL2sXmtlOisQ%3D%3D Occurrence Handle10.1016/0076-6879(86)31033-4

    Article  PubMed  CAS  Google Scholar 

  47. P. L. Privalov (1989) ArticleTitleThermodynamic problems of protein structure Annu. Rev. Biophys. Biomol. Struct. 18 47–69 Occurrence Handle1:CAS:528:DyaL1MXktlGiurg%3D Occurrence Handle10.1146/annurev.biophys.18.1.47

    Article  CAS  Google Scholar 

  48. A. Savitzky M. J. E. Golay (1964) ArticleTitleSmoothing and differentiation of data by simplified least squares procedures Anal. Chem. 36 1627–1639 Occurrence Handle1:CAS:528:DyaF2cXksVCjur8%3D Occurrence Handle10.1021/ac60214a047

    Article  CAS  Google Scholar 

  49. W. Surewicz H. Mantsch (1988) ArticleTitleNew insight into protein secondary structure from resolution-enhanced infrared spectra Biochim. Biophys. Acta 952 115–130 Occurrence Handle3276352 Occurrence Handle1:CAS:528:DyaL1cXhtVyqtLY%3D

    PubMed  CAS  Google Scholar 

  50. T. Maruyama S. Katoh M. Nakajima H. Nabetani (2001) ArticleTitleMechanism of bovine serum albumin aggregation during ultrafiltration Biotechnol. Bioeng. 75 233–238 Occurrence Handle11536147 Occurrence Handle1:CAS:528:DC%2BD3MXnsVeqtro%3D Occurrence Handle10.1002/bit.10001

    Article  PubMed  CAS  Google Scholar 

  51. K. Murayama M. Tomida (2004) ArticleTitleHeat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy Biochemistry 43 11526–11532 Occurrence Handle15350138 Occurrence Handle1:CAS:528:DC%2BD2cXmslaqtrs%3D Occurrence Handle10.1021/bi0489154

    Article  PubMed  CAS  Google Scholar 

  52. J. Zhang Y. B. Yan (2005) ArticleTitleProbing conformational changes of proteins by quantitative second-derivative infrared spectroscopy Anal. Biochem. 340 89–98 Occurrence Handle15802134 Occurrence Handle1:CAS:528:DC%2BD2MXivV2jsLY%3D Occurrence Handle10.1016/j.ab.2005.01.053

    Article  PubMed  CAS  Google Scholar 

  53. H. R. Costantino J. D. Andya S. J. Shire C. C. Hsu (1997) ArticleTitleFourier-transform infrared spectroscopic analysis of the secondary structure of recombinant humanized immunoglobulin G Pharm. Sci. 3 121–128 Occurrence Handle1:CAS:528:DyaK2sXlslykt70%3D

    CAS  Google Scholar 

  54. M. Levitt J. Greer (1977) ArticleTitleAutomatic identification of secondary structure in globular proteins J. Mol. Biol. 114 181–239 Occurrence Handle909086 Occurrence Handle1:CAS:528:DyaE2sXlsVOnsbs%3D Occurrence Handle10.1016/0022-2836(77)90207-8

    Article  PubMed  CAS  Google Scholar 

  55. A. Bhattacharjee S. Saha A. Biswas M. Kundu L. Ghosh K. P. Das (2005) ArticleTitleStructural changes of beta-lactoglobulin during thermal unfolding and refolding—An FT-IR and circular dichroism study Protein J. 24 27–35 Occurrence Handle15756815 Occurrence Handle1:CAS:528:DC%2BD2MXotVKjsg%3D%3D Occurrence Handle10.1007/s10930-004-0603-z

    Article  PubMed  CAS  Google Scholar 

  56. G. Panick R. Malessa R. Winter (1999) ArticleTitleDifferences between the pressure- and temperature-induced denaturation and aggregation of -lactoglobulin A, B, and AB monitored by FT-IR spectroscopy and small-angle X-ray scattering Biochemistry 38 6512–6519 Occurrence Handle10350469 Occurrence Handle1:CAS:528:DyaK1MXisFOltL0%3D Occurrence Handle10.1021/bi982825f

    Article  PubMed  CAS  Google Scholar 

  57. D. M. Byler H. Susi (1986) ArticleTitleExamination of the secondary structure of proteins by deconvolved FT-IR Biopolymers 25 469–487 Occurrence Handle3697478 Occurrence Handle1:CAS:528:DyaL28Xht1GqtLc%3D Occurrence Handle10.1002/bip.360250307

    Article  PubMed  CAS  Google Scholar 

  58. X. L. Qi C. Holt D. McNulty D. T. Clarke S. Brownlow G. R. Jones (1997) ArticleTitleEffect of temperature on the secondary structure of b-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis Biochem. J. 324 341–346 Occurrence Handle9164875 Occurrence Handle1:CAS:528:DyaK2sXjsFCms7c%3D

    PubMed  CAS  Google Scholar 

  59. Y.-H. Liao M. B. Brown T. Nazir A. Quader G. P. Martin (2002) ArticleTitleEffect of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme Pharm. Res. 19 1847–1853 Occurrence Handle12523664 Occurrence Handle1:CAS:528:DC%2BD38XpsVSjsb8%3D Occurrence Handle10.1023/A:1021445608807

    Article  PubMed  CAS  Google Scholar 

  60. J. F. Carpenter B. S. Kendrick B. S. Chang M. C. Manning T. W. Randolph (1999) ArticleTitleInhibition of stress-induced aggregation of protein therapeutics Methods Enzymol. 309 236–255 Occurrence Handle10507028 Occurrence Handle1:CAS:528:DC%2BD3cXksVKhtQ%3D%3D

    PubMed  CAS  Google Scholar 

  61. A. S. Lee C. Galea E. L. DiGiammarino B. Jun G. Murti R. C. Ribeiro G. Zambetti C. P. Schultz R. W. Kriwacki (2003) ArticleTitleReversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant J. Mol. Biol. 327 699–709 Occurrence Handle12634062 Occurrence Handle1:CAS:528:DC%2BD3sXhvFersr4%3D Occurrence Handle10.1016/S0022-2836(03)00175-X

    Article  PubMed  CAS  Google Scholar 

  62. E. Querol J. A. Perez-Pons A. Mozo-Villarias (1996) ArticleTitleAnalysis of protein conformational characteristics related to thermostability Protein Eng. 9 265–271 Occurrence Handle8736493 Occurrence Handle1:CAS:528:DyaK28XjtlWqsbw%3D

    PubMed  CAS  Google Scholar 

  63. B. S. Kendrick J. L. Cleland X. M. Lam T. Nguyen T. W. Randolph M. C. Manning J. F. Carpenter (1998) ArticleTitleAggregation of recombinant human interferon gamma: kinetics and structural transitions J. Pharm. Sci. 87 1069–1076 Occurrence Handle9724556 Occurrence Handle1:CAS:528:DyaK1cXkvVKjtrw%3D Occurrence Handle10.1021/js9801384

    Article  PubMed  CAS  Google Scholar 

  64. A. Muga H. H. Mantsch W. Surewicz (1991) ArticleTitleMembrane binding induces destabilization of cytochrome c structure Biochemistry 30 7219–7224 Occurrence Handle1649625 Occurrence Handle1:CAS:528:DyaK3MXksVCnurw%3D Occurrence Handle10.1021/bi00243a025

    Article  PubMed  CAS  Google Scholar 

  65. M. A. M. Hoffmann J. C. Miltenburg Particlevan P. J. J. M. Mil Particlevan (1997) ArticleTitleThe suitability of scanning calorimetry to investigate slow irreversible protein denaturation Thermochim. Acta 306 45–49 Occurrence Handle1:CAS:528:DyaK2sXnsFertro%3D Occurrence Handle10.1016/S0040-6031(97)00298-0

    Article  CAS  Google Scholar 

  66. B. A. Shirley (1992) Protein conformational stability estimated from urea, guanidine hydrochloride, and thermal denaturation curves T. J. Ahern M. C. Manning (Eds) Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation Plenum Press New York 167–194

    Google Scholar 

  67. B. S. Kendrick T. Li B. S. Chang (2003) Physical stabilization of proteins in aqueous solution J. F. Carpenter M. C. Manning (Eds) Rational Design of Stable Protein Formulations: Theory and Practice Kluwer Academic/Plenum Publishers New York 61–84

    Google Scholar 

  68. M. Yamasaki H. Yano K. Aoki (1990) ArticleTitleDifferential scanning calorimetric studies on bovine serum albumin: I. effects of pH and ionic strength Int. J. Biol. Macromol. 12 263–268 Occurrence Handle2096908 Occurrence Handle1:CAS:528:DyaK3cXls1yntb0%3D Occurrence Handle10.1016/0141-8130(90)90007-W

    Article  PubMed  CAS  Google Scholar 

  69. A. W. P. Vermeer M. G. E. G. Bremer W. Norde (1998) ArticleTitleStructural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy Biochim. Biophys. Acta (G) 1425 1–12 Occurrence Handle1:CAS:528:DyaK1cXmslGqtbk%3D

    CAS  Google Scholar 

  70. P. Relkin L. Eynard B. Launay (1992) ArticleTitleThermodynamic parameters of [beta]-lactoglobulin and [alpha]-lactalbumin. A DSC study of denaturation by heating Thermochim. Acta 204 111–121 Occurrence Handle1:CAS:528:DyaK38XmsVOgs7c%3D Occurrence Handle10.1016/0040-6031(92)80320-V

    Article  CAS  Google Scholar 

  71. A. A. Elkordy R. T. Forbes B. W. Barry (2004) ArticleTitleStability of crystallised and spray-dried lysozyme Int. J. Pharm. 278 209–219 Occurrence Handle15196626 Occurrence Handle1:CAS:528:DC%2BD2cXkslKmurc%3D Occurrence Handle10.1016/j.ijpharm.2004.02.027

    Article  PubMed  CAS  Google Scholar 

  72. K. Welfle R. Misselwitz G. Hausdorf W. Hohne H. Welfle (1999) ArticleTitleConformation, pH-induced conformational changes, and thermal unfolding of anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab and Fc fragments Biochim. Biophys. Acta, Prot. Struct. Mol. Enzymol. 1431 120–131 Occurrence Handle1:CAS:528:DyaK1MXivFeitL0%3D

    CAS  Google Scholar 

  73. X. L. Qi S. Brownlow C. Holt P. Sellers (1995) ArticleTitleThermal denaturation of [beta]-lactoglobulin: effect of protein concentration at pH 6.75 and 8.05 Biochim. Biophys. Acta, Prot. Struct. Mol. Enzymol. 1248 43–49 Occurrence Handle10.1016/0167-4838(94)00225-6

    Article  Google Scholar 

  74. L. Runkel W. Meier R. B. Pepinsky M. Karpusas A. Whitty K. Kimball M. Brickelmaier C. Muldowney W. Jones S. E. Goelz (1998) ArticleTitleStructural and functional differences between glycosylated and non-glycosylated forms of human interferon-γ (IFN-γ) Pharm. Res. 15 641–649 Occurrence Handle9587963 Occurrence Handle1:CAS:528:DyaK1cXjt1ars7s%3D Occurrence Handle10.1023/A:1011974512425

    Article  PubMed  CAS  Google Scholar 

  75. M. Cueto M. J. Dorta O. Munguia M. Llabrés (2003) ArticleTitleNew approach to stability assessment of protein solution formulations by differential scanning calorimetry Int. J. Pharm. 252 159–166 Occurrence Handle12550791 Occurrence Handle1:CAS:528:DC%2BD3sXmtVCktg%3D%3D Occurrence Handle10.1016/S0378-5173(02)00627-0

    Article  PubMed  CAS  Google Scholar 

  76. P. L. Privalov S. J. Gill (1988) ArticleTitleStability of protein structure and hydrophobic interaction Adv. Protein Chem. 39 191–234 Occurrence Handle3072868 Occurrence Handle1:CAS:528:DyaL1MXhs1yiurk%3D Occurrence Handle10.1016/S0065-3233(08)60377-0

    Article  PubMed  CAS  Google Scholar 

  77. Y.-C. J. Wang M. A. Hanson (1988) ArticleTitleParenteral formulations of proteins and peptides: stability and stabilizers PDA J. Pharm. Sci. Technol. 42 S1–S25

    Google Scholar 

  78. K. A. Dill D. O. Alonso K. Hutchinson (1989) ArticleTitleThermal stabilities of globular proteins Biochemistry 28 5439–5449 Occurrence Handle2775715 Occurrence Handle1:CAS:528:DyaL1MXktF2lsrw%3D Occurrence Handle10.1021/bi00439a019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Claudia Borst and Franziska Huber for their assistance in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns-Christian Mahler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matheus, S., Friess, W. & Mahler, HC. FTIR and nDSC as Analytical Tools for High-Concentration Protein Formulations. Pharm Res 23, 1350–1363 (2006). https://doi.org/10.1007/s11095-006-0142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0142-8

Key Words

Navigation