Skip to main content
Log in

Multifunctional applications of TiO2 thin films synthesized by sol–gel dip coating technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pure TiO2 thin films were synthesized by non-aqueous sol–gel method using indigenously fabricated programmable low-cost dip coating unit. The structural, morphological, and optical characterizations of the thin films annealed at various temperatures were carried out to investigate the influence of annealing temperature on the film characteristics. Thin film samples were characterized using grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, HR-TEM, FE-SEM, AFM, profilometry, and UV–Vis spectrophotometery. GIXRD patterns shows phase transformation from amorphous to crystalline at 723 K and into a mixed phase at 1223 K. The average crystallite size of thin films increases from 13.45 to 69.24 nm with increase in annealing temperature. XPS analysis confirmed the phase composition of the thin films. HR-TEM and FE-SEM images revealed spherical surface morphology. FE-SEM micrographs showed increase in mean particle size with increase in annealing temperature. UV–Vis optical transmittance spectra indicated a decrease in optical band gap from 3.47 to 3.03 eV with increase in annealing temperature. Photocatalytic activity of thin films was evaluated by monitoring the degradation of aqueous methylene blue (MB) dye under sunlight. The results indicated that thin film annealed at 723 K in anatase phase has the highest photocatalytic activity with 79.35% degradation. This thin film exhibited high antimicrobial activity against gram-negative (E. coli) and gram-positive (S. aureus) pathogens. Moreover this thin film possesses durability, reusability, hydrophilicity, anti-fogging behavior, and good wetting performance. These findings provide valuable insights into the multifunctional application of TiO2 thin films, highlighting their potential for environmental and biomedical applications.

Graphical Abstract

Highlights

  • Synthesis of TiO2 thin films via the sol–gel method using indigenously fabricated programmable dip coating unit.

  • Structural, optical, and morphological studies of thin films were carried out and optimized thin film for MB degradation under direct sunlight was arrived at.

  • The optimized thin film yielded high antimicrobial activity on gram-negative (E. coli) and gram-positive (S. aureus) pathogens.

  • Durability, anti-fogging, and wetting performance of optimized thin film was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Dulian P et al. (2020) Effect of titanium source and sol–gel TiO2 thin film formation parameters on its morphology and photocatalytic activity. Mater Sci 38:424–433. https://doi.org/10.2478/msp-2020-0056

    Article  CAS  Google Scholar 

  2. Haider J, Anbari AL et al. (2017) Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119:332–345. https://doi.org/10.1016/j.egypro.2017.07.117

    Article  CAS  Google Scholar 

  3. Hashimoto K, Irie H, Fujishima A (2006) TiO2 photocatalysis: a historical overview and future prospects. Japanese J Appl Phys 44:8269–8285. https://doi.org/10.1143/JJAP.44.8269

    Article  ADS  CAS  Google Scholar 

  4. Rao KN (2015) Influence of deposition parameters on optical properties of TiO2 films. Opt Eng 2357–2364. https://doi.org/10.1117/1.1496489

  5. Senthilkumar V, Jayachandran M, Sanjeeviraja C (2010) Preparation of anatase TiO2 thin films for dye-sensitized solar cells by DC reactive magnetron sputtering technique. Thin Solid Films 519:991–994. https://doi.org/10.1016/j.tsf.2010.08.027

    Article  ADS  CAS  Google Scholar 

  6. Bersani D, Antonioli G, Paolo P, Lopez T (1998) Raman study of nanosized titania prepared by sol–gel route. J Non Cryst Solids 234:175–181. https://doi.org/10.1016/S0022-3093(98)00489-X

    Article  ADS  Google Scholar 

  7. Arunachalam A, Dhanapandian S, Manoharan C, Sivakumar G (2015) Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 138:105–112. https://doi.org/10.1016/j.saa.2014.11.016

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wang B, Wu Z, Wang S et al. (2021) Mg/Cu-doped TiO2 nanotube array: a novel dual-function system with self-antibacterial activity and excellent cell compatibility. Mater Sci Eng C 128:112322. https://doi.org/10.1016/j.msec.2021.112322

    Article  ADS  CAS  Google Scholar 

  9. Oktik S, Sökmen İ, Bange K (2021) Thin-film technologies for glass surfaces. In: Encyclopedia of glass science, technology, history, and culture, vol 2E. Wiley, I:763–774. https://doi.org/10.1002/9781118801017.ch6.8

  10. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 1689–1695. https://doi.org/10.1039/b412803f

  11. Manurung P, Putri Y, Simanjuntak W, Low IM (2013) Synthesis and characterisation of chemical bath deposited TiO2 thin films. Ceram Int 39:255–259. https://doi.org/10.1016/j.ceramint.2012.06.019

    Article  CAS  Google Scholar 

  12. Cuadra JG, Molina prados S, Mínguez vega G et al. (2023) Multifunctional silver-coated transparent TiO2 thin films for photocatalytic and antimicrobial applications. Appl Surf Sci 617:156519. https://doi.org/10.1016/j.apsusc.2023.156519

    Article  CAS  Google Scholar 

  13. Ngaffo FF, Caricato AP, Fernandez M et al. (2007) Structural properties of single and multilayer ITO and TiO2 films deposited by reactive pulsed laser ablation deposition technique. Appl Surf Sci 253:6508–6511. https://doi.org/10.1016/j.apsusc.2007.01.110

    Article  ADS  CAS  Google Scholar 

  14. Zhang P, Yang H, Lin S et al. (2011) Preparation of TiO2 films on quartz glass plate and its study of photocatalytic properties in ultrasound. Adv Mat Res 286:970–973. https://doi.org/10.4028/www.scientific.net/AMR.284-286.970

  15. Hassanien AS, Akl AA (2019) Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Physica B Condens Matter. https://doi.org/10.1016/j.physb.2019.411718

  16. Renugadevi R, Venkatachalam T, Narayanasamy R, Kirupha SD (2016) Preparation of Co doped TiO2 nano thin films by sol gel technique and photocatalytic studies of prepared films in tannery effluent. Optik 10127–10134. https://doi.org/10.1016/j.ijleo.2016.07.090

  17. ISO 9211-4, Optics and photonics-Optical coatings, Part 4: Specific Test Methods (ISO, 2012) Switzerland

  18. Moongraksathum B et al. (2018) Photocatalytic antibacterial effectiveness of Cu-doped TiO2 thin film prepared via the peroxo sol–gel method. Catalysts 8(9):352. https://doi.org/10.3390/catal8090352

    Article  CAS  Google Scholar 

  19. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 760–762. https://doi.org/10.1021/ac60125a006

  20. Antonio JAT et al. (2009) TiO2 thin films—influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508. https://doi.org/10.1016/j.solener.2009.04.008

    Article  ADS  CAS  Google Scholar 

  21. Jin D, Hong S, Hoon S, Jung E (2002) Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater Lett 57:355–360. https://doi.org/10.1016/S0167-577X(02)00790-5

    Article  Google Scholar 

  22. Komaraiah D, Radha E, Sivakumar J et al. (2020) Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108:110401. https://doi.org/10.1016/j.optmat.2020.110401

    Article  CAS  Google Scholar 

  23. Samuel J, Suresh S, Shabna S et al. (2022) Characterization and antibacterial activity of Ti doped ZnO nanorods prepared by hydrazine assisted wet chemical route. Phys E Low Dimens Syst Nanostruct 143:115374. https://doi.org/10.1016/j.physe.2022.115374

    Article  CAS  Google Scholar 

  24. Malliga P, Pandiarajan J, Prithivikumaran N, Neyvasagam K (2014) Influence of film thickness on structural and optical properties of sol–gel spin coated TiO2 thin film. IOSR J Appl Phys 6(1):22–28

    Article  Google Scholar 

  25. Kavitha VT, Vindhya PS et al. (2023) Phyto‑synthesis of pure and Mn doped ­ SnO2 nanoparticles: evaluation of antimicrobial, antioxidant and photocatalytic activities. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02733-6

  26. Kabir MH, Ali MM, Kaiyum MA, Rahman MS (2019) Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J Phys Commun 3:105007. https://doi.org/10.1088/2399-6528/ab496f

    Article  CAS  Google Scholar 

  27. Vidhya R, Sankareswari M, Neyvasagam K (2016) Effect of annealing temperature on structural and optical properties of Cu–Tio2 thin film Mater Sci 37:42–46.

    Google Scholar 

  28. Zhao M, Sun Z, Zhang Z et al. (2020) Suppression of oxygen vacancy defects in sALD–ZnO films annealed in different conditions. Materials 13(18):3910. https://doi.org/10.3390/ma13183910

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henkel B, Neubert T, Zabel S et al. (2016) Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl Catal B 180:362–371. https://doi.org/10.1016/j.apcatb.2015.06.041

    Article  CAS  Google Scholar 

  30. Santoyo-salazar J, Gallardo S et al. (2019) Sol–gel synthesis of Ag-loaded TiO2–ZnO thin films with enhanced photocatalytic activity. J Alloy Compd 779:908–917. https://doi.org/10.1016/j.jallcom.2018.11.302

    Article  CAS  Google Scholar 

  31. Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy {101} and high-energy {001} for enhanced photocatalysis. ACS Nano 7:2532–2540. https://doi.org/10.1021/nn305877v

    Article  CAS  PubMed  Google Scholar 

  32. Eufinger K, Poelman D (2008) Effect of microstructure and crystallinity on the photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering. J Phys D Appl Phys 40(17):5232–5238. https://doi.org/10.1088/0022-3727/40/17/033

    Article  ADS  CAS  Google Scholar 

  33. Pardeshi SK, Patil AB (2009) Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J Mol Catal A Chem 308:32–40. https://doi.org/10.1016/j.molcata.2009.03.023

    Article  CAS  Google Scholar 

  34. Perez Gonalez M et al. (2023) Synthesis of sol–gel TiO2 nanoparticles and assessment of their antifungal activity for the eventual conservation of historical documents. Appl Mater Today 35:101999. https://doi.org/10.1016/j.apmt.2023.101999

    Article  Google Scholar 

  35. Nezar S, Saoula N, Sali S et al. (2016) Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates. Appl Surf Sci 172–179. https://doi.org/10.1016/j.apsusc.2016.08.125

  36. Vindhya PS, Kunjikannan R, Kavitha VT (2023) Bio-fabrication of Ni doped ZnO nanoparticles using Annona muricata leaf extract and investigations of their antimicrobial, antioxidant and photocatalytic activities. Phys Scr 98:15830. https://doi.org/10.1088/1402-4896/acaa10

    Article  CAS  Google Scholar 

  37. Aswathy NR, Jiji V, Vinodkumar VR (2020) Effect of annealing temperature on the structural, optical, magnetic and electrochemical properties of NiO thin films prepared by sol–gel spin coating. J Mater Sci Mater Electron 31:16634–16648. https://doi.org/10.1007/s10854-020-04218-5

    Article  CAS  Google Scholar 

  38. Bakri AS, Sahdan MZ, Adriyanto F et al. (2017) Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf Proc 1788:030030. https://doi.org/10.1063/1.4968283

    Article  Google Scholar 

  39. Horcas I et al. (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705. https://doi.org/10.1063/1.2432410

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Galil AA, Hussien MSA, Balboul MR (2022) Optimal thickness and annealing temperature for enhancement of structural, optical, and photocatalytic properties of ZnO thin films. J Aust Ceram Soc 1667–1683. https://doi.org/10.1007/s41779-022-00802-6

  41. Bruque JM, Gonzalez Martin ML et al. (2007) Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface. Ultramicroscopy 107:617–625. https://doi.org/10.1016/j.ultramic.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  42. Asadi MV, Solookinejad G (2021) Structural, morphological and optical analysis of TiO2 thin films prepared by RF magnetron sputtering. J Optoelectron Nanostruct 6:59–94. https://doi.org/10.30495/JOPN.2021.28681.1230

    Article  Google Scholar 

  43. Wang M, Lin H, Wang C, Wu H (2012) Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films. Ceram Int 38:195–200. https://doi.org/10.1016/j.ceramint.2011.05.160

    Article  CAS  Google Scholar 

  44. Ben JN, Gaidi M, Bousbih F et al. (2012) Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol–gel technique. Curr Appl Phys 12:422–428. https://doi.org/10.1016/j.cap.2011.07.041

    Article  ADS  Google Scholar 

  45. Paul TC, Podder J, Babu MH (2020) Optical constants and dispersion energy parameters of Zn-doped TiO2 thin films prepared by spray pyrolysis technique. Surf Interfaces 100725. https://doi.org/10.1016/j.surfin.2020.100725

  46. Lukong VT, Ukoba K, Yoro KO, Jen TC (2022) Annealing temperature variation and its influence on the self-cleaning properties of TiO2 thin films. Heliyon 8:e09460. https://doi.org/10.1016/j.heliyon.2022.e09460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lamichhane A (2023) Energy-Gap-Refractive index Relations in semiconductors—Using Wemple–DiDomenico model to unify Moss, Ravindra, and Herve–Vandamme Relationships. Solids 4(4):316–326. https://doi.org/10.3390/solids4040020

  48. Wang X, Wu G, Zhou B, Shen J (2013) Optical constants of crystallized TiO2 coatings prepared by sol–gel process. Materials 6:2819–2830. https://doi.org/10.3390/ma6072819

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paul TC, Podder J, Paik L (2021) Preparation and characterization of Fe-incorporated TiO2 thin films: A study of optical constants and dispersion energy parameters. https://doi.org/10.48550/arXiv.2103.03521

  50. Sta I, Jlassi M, Hajji M (2014) Structural and optical properties of TiO2 thin films prepared by spin coating. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-014-3452-z

  51. Kharoubi A, Bouaza A, Benrabah B, Ammari A (2018) Sol–gel dip coating method synthesis of Mn-doped titanium dioxide thin films. J Mol Eng Mater 6:1–8. https://doi.org/10.1142/S2251237318500016

    Article  CAS  Google Scholar 

  52. Torralvo MJ, Sanz J, Sobrados I et al. (2018) Anatase photocatalyst with supported low crystalline TiO2: the influence of amorphous phase on the activity. Appl Catal B Environ 221:140–151. https://doi.org/10.1016/j.apcatb.2017.08.089

    Article  CAS  Google Scholar 

  53. Zhang X, Zhou M, Lei L (2005) Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Catal A Gen 282:285–293. https://doi.org/10.1016/j.apcata.2004.12.022

    Article  CAS  Google Scholar 

  54. Luttrell T, Halpegamage S, Tao J et al. (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 1–8. https://doi.org/10.1038/srep04043

  55. Gopika MS, Jayasudha S, Nair PB (2022) Phase transformation induced structural, optical and photocatalytic investigations of TiO2 nanoparticles. Bull Mater Sci. https://doi.org/10.1007/s12034-021-02647-4

  56. Yu JC, Yu J, Ho W, Zhao J (2002) Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. J Photochem Photobiol A Chem 148:331–339

    Article  CAS  Google Scholar 

  57. Biswas S, Majumder A, Hossain MF et al. (2012) Effect of annealing temperature on the photocatalytic activity of sol–gel derived TiO2 thin films. J Vac Sci Technol A 678. https://doi.org/10.1116/1.2889416

  58. Bhoraskar SV, Bhave T, Railkar TA (1994) Crystallite-size-dependent characteristics of porous silicon. Bull Mater Sci 17:523–531.

    Article  Google Scholar 

  59. Matsumoto Y (1996) Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J Solid State Chem 234:227–234

    Article  ADS  Google Scholar 

  60. Ning X, Hao A, Chen R et al. (2024) Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental remediation and understanding the charge transfer mechanism. Carbon 218:118772. https://doi.org/10.1016/j.carbon.2023.118772

    Article  CAS  Google Scholar 

  61. Xie X, Gao L (2009) Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations. Curr Appl Phys 9:S185–S188. https://doi.org/10.1016/j.cap.2009.01.035

    Article  ADS  Google Scholar 

  62. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264

    Article  CAS  PubMed  Google Scholar 

  63. Joost U, Juganson K, Visnapuu M et al. (2014) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B Biol 142:178–185. https://doi.org/10.1016/j.jphotobiol.2014.12.010

    Article  CAS  Google Scholar 

  64. Meng D, Liu X, Xie Y et al. (2019) Antibacterial activity of visible light-activated TiO2 thin films with low level of Fe doping. Adv Mater Sci Eng. https://doi.org/10.1155/2019/5819805

  65. Al-jawad SMH, Taha AA, Salim MM (2017) Synthesis and characterization of Pure and Fe doped TiO2 thin films for antimicrobial activity. Optik 42–53. https://doi.org/10.1016/j.ijleo.2017.05.048

Download references

Acknowledgements

We would like to acknowledge Central Laboratory for Instrumentation and Facilitation (CLIF), Department of Optoelectronics, University of Kerala, CSIR-NIIST, DST-SAIF (Cochin and Kottayam), and BRMAS, Thiruvananthapuram for providing various instrument facilities. Arsha Sunil acknowledges junior research fellowship [Ac.EV1(4)/37257/JRF/2019] from the University of Kerala.

Funding

This work was supported by the University of Kerala in the form of University Junior Research Fellowship [Ac.EV1(4)/37257/JRF/2019].

Author information

Authors and Affiliations

Authors

Contributions

Arsha Sunil: conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing-original draft, funding acquisition. Gopika M S: methodology, writing—review and editing. Jayasudha S: investigation, validation, methodology, writing—review & editing. Prabitha B Nair: conceptualization, investigation, validation, methodology, writing—review & editing, visualization, supervision.

Corresponding author

Correspondence to Prabitha B. Nair.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunil, A., Gopika, M.S., Jayasudha, S. et al. Multifunctional applications of TiO2 thin films synthesized by sol–gel dip coating technique. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06358-0

Keywords

Navigation