Skip to main content
Log in

Biohybrid silicon-organic materials architecture obtained using various structure-affecting agents

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The article describes the immobilization of yeast cells Ogataea polymorpha VKM Y-2559 into organosilicon matrices based on tetraethoxysilane and dimethyldiethoxysilane using polyethylene glycol, polyvinyl alcohol and chitosan as structure-affecting agents. The influence of the structure-affecting agent on the time of formation of the sol-gel capsule around the cells and on the morphology of the hybrid material was determined. The formation of organosilicon material was confirmed using IR spectroscopy. Using the method of energy-dispersive X-ray spectroscopy, it was proven for the first time that the structure-affecting agent is not incorporated into the structure of the organosilicon shell.

Graphical Abstract

Highlights

  • Yeast Ogataea polymorpha VKM Y-2559 cells were encapsulated in matrices based on tetraethoxysilane and dimethyldiethoxysilane in combination with a structure-influencing agent. Encapsulated cells can be used as templates to create a material with controlled porosity for specific tasks.

  • Optical microscopy was used to determine the time of formation of organosilicate matrices as a function of the template. The fastest matrix is formed with chitosan, the slowest with polyethylene glycol.

  • The morphology of the obtained materials was determined by scanning electron microscopy. The formation of an organosilicon polymer was demonstrated by IR spectroscopy. The EDX method showed that the structure-affecting agent does not form covalent bonds with the organosilicate matrix, but envelops the biomaterial to prevent excessive compaction of the material.

  • The results of the study confirm the ability of different structure-affecting agents to influence morphologies in the forming sol-gel. This is important for the formation of matrices with well-defined pores that appear when microorganisms are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lapponi MJ, Méndez MB, Trelles JA, Rivero CW (2022) Cell immobilization strategies for biotransformations. Curr Opin Green Sustain Chem 33:100565. https://doi.org/10.1016/j.cogsc.2021.100565

    Article  CAS  Google Scholar 

  2. Rehm FBH, Chen S, Rehm BHA (2016) Enzyme engineering for in situ immobilization. Molecules 21:1370

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym 152:104613. https://doi.org/10.1016/j.reactfunctpolym.2020.104613

    Article  CAS  Google Scholar 

  4. Cademartiri R, Anany H, Gross I, Bhayani R, Griffiths M, Brook MA (2010) Immobilization of bacteriophages on modified silica particles. Biomaterials 31:1904–1910. https://doi.org/10.1016/j.biomaterials.2009.11.029

    Article  CAS  PubMed  Google Scholar 

  5. Guan Y, Huang Y, Li T (2022) Applications of gelatin in biosensors: recent trends and progress. Biosensors 12:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maity M, Bhattacharyya A, Bhowal J (2021) Production and immobilization of β-galactosidase isolated from enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Appl Biochem Biotechnol 193:2198–2224

    Article  CAS  PubMed  Google Scholar 

  7. da Conceição RCN, Batista RD, dos Anjos Leal Zimmer FM, Trindade IKM, de Almeida AF, do Amaral Santos CCA (2021) Effect of co-encapsulation using a calcium alginate matrix and fructooligosaccharides with gelatin coating on the survival of lactobacillus paracasei cells. Braz J Microbiol 52:1503–1512. https://doi.org/10.1007/s42770-021-00484-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Awad GEA, Ghanem AF, Abdel Wahab WA, Wahba MI (2020) Functionalized κ-carrageenan/hyperbranched poly(amidoamine)for protease immobilization: thermodynamics and stability studies. Int J Biol Macromol 148:1140–1155. https://doi.org/10.1016/j.ijbiomac.2020.01.122

    Article  CAS  PubMed  Google Scholar 

  9. Sharmeen S, Rahman MS, Islam MM, Islam MS, Shahruzzaman M, Mallik AK, Haque P, Rahman MM (2019) 11 - Application of polysaccharides in enzyme immobilization. In: Maiti S, Jana S (eds) Functional polysaccharides for biomedical applications. Woodhead Publishing, Sawston, Cambridge, pp 357–395

  10. Yue W, Liang J, Wang H, Zhang Y, Li C, Su W (2022) Preparation and properties of enzyme-carrying silica xerogel based on TMOS/MTMS co-precursors. J Sol-Gel Sci Technol 102:400–411. https://doi.org/10.1007/s10971-022-05739-7

    Article  CAS  Google Scholar 

  11. Rathnayake IVN, Megharaj M, Naidu R (2023) Sol–Gel immobilized optical microalgal biosensor for monitoring Cd, Cu and Zn bioavailability in freshwater. Bull Environ Contam Toxicol 110:73

    Article  CAS  PubMed  Google Scholar 

  12. Kamanina OA, Lantsova EA, Rybochkin PV, Arlyapov VA, Saverina EA, Kulikovskaya NS, Perepukhov AM, Vereshchagin AN, Ananikov VP (2023) 3-in-1” hybrid biocatalysts: association of yeast cells immobilized in a Sol–Gel matrix for determining sewage pollution. ACS Appl Mater Interfaces 15:47779–47789. https://doi.org/10.1021/acsami.3c09897

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez Caresani JR, Dallegrave A, dos Santos JHZ (2020) Amylases immobilization by Sol–Gel entrapment: application for starch hydrolysis. J Sol-Gel Sci Technol 94:229–240

    Article  CAS  Google Scholar 

  14. Nagy-Győr L, Farkas E, Lăcătuș M, Tóth G, Incze D, Hornyánszky G, Bódai V, Paizs C, Poppe L, Balogh-Weiser D (2020) Conservation of the biocatalytic activity of whole yeast cells by supported Sol–Gel entrapment for efficient acyloin condensation. Period Polytech Chem Eng 64:153–161. https://doi.org/10.3311/PPch.14645

    Article  Google Scholar 

  15. Morosanova MA, Morosanova EI (2023) Sol-Gel films doped with enzymes and banana crude extract as sensing materials for spectrophotometric determination. Gels 9:240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Califano V, Costantini A (2020) Immobilization of cellulolytic enzymes in mesostructured silica materials. Catalysts 10:706

    Article  CAS  Google Scholar 

  17. Mohidem NA, Bin Mat H, Mohamad M, Hamzah F, Rashid MU (2021) Strategy to enhance catalytic activity and stability of Sol–Gel oxidoreductases. J Sol-Gel Sci Technol 98:462–469. https://doi.org/10.1007/s10971-021-05522-0

    Article  CAS  Google Scholar 

  18. Soares-Castro P, Soares F, Santos PM (2020) Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds. Molecules 26:91

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN (2022) Esterases as emerging biocatalysts: mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 69:2176–2194

    Article  CAS  PubMed  Google Scholar 

  20. da Silva JL, Sales MB, de Castro Bizerra V, Nobre MMR, de Sousa Braz AK, da Silva Sousa P, Cavalcante ALG, Melo RLF, Gonçalves De Sousa Junior P, Neto FS (2023) Lipase from yarrowia lipolytica: prospects as an industrial biocatalyst for biotechnological applications. Fermentation 9:581

    Article  Google Scholar 

  21. Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J (2020) Recent advances and future perspectives of Sol–Gel derived porous bioactive glasses: a review. RSC Adv 10:33782–33835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sert Çok S, Gizli N (2022) Microstructural properties and heat transfer characteristics of in-situ modified silica aerogels prepared with different organosilanes. Int J Heat Mass Transf 188:122618. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122618

    Article  CAS  Google Scholar 

  23. Catauro M, Ciprioti SV (2021) Characterization of hybrid materials prepared by Sol-Gel method for biomedical implementations. A critical review. Materials 14:1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teng S-H, Niu N, Chen F-W, Wang P (2019) Polyvinyl alcohol/silica hybrid microspheres: synthesis, characterization and potential applications as adsorbents. Mater Res Express 6:55201

    Article  CAS  Google Scholar 

  25. Niu N, Teng S-H, Zhou H-J, Qian H-S (2019) Synthesis, characterization, and in vitro drug delivery of chitosan-silica hybrid microspheres for bone tissue engineering. J Nanomater 7

  26. Reyes-Peces MV, Fernández-Montesinos R, Mesa-Díaz MdelM, Vilches-Pérez JI, Cárdenas-Leal JL, de la Rosa-Fox N, Salido M, Piñero M (2023) Structure-related mechanical properties and bioactivity of silica–gelatin hybrid aerogels for bone regeneration. Gels 9:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mandal D, Chattopadhyay H, Halder K (2023) Development of silica-collagen hybrid as corneal substitute through sol-gel route. Bionanoscience 13:2441

    Article  Google Scholar 

  28. Blanco I, Latteri A, Cicala G, D’Angelo A, Viola V, Arconati V, Catauro M (2022) Antibacterial and chemical characterization of silica-quercetin-PEG hybrid materials synthesized by Sol–Gel route. Molecules 27:979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Catauro M, D’Angelo A, Viola V, Cimmino G, Pacifico S (2023) Antibacterial and cytotoxic silica-polycaprolactone-chlorogenic acid hybrids by Sol–Gel route. Molecules 28:3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  31. Huang Z, Chen G, Zeng G, Chen A, Zuo Y, Guo Z, Tan Q, Song Z, Niu Q (2015) Polyvinyl alcohol-immobilized phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater. J Hazard Mater 289:174–183. https://doi.org/10.1016/j.jhazmat.2015.02.043

    Article  CAS  PubMed  Google Scholar 

  32. Chandramouli M, Basavanna V, Ningaiah S (2023) A comprehensive review on nontronite-chitosan based nanocomposites (a review). Russ J Gen Chem 93:1523–1534. https://doi.org/10.1134/S1070363223060257

    Article  CAS  Google Scholar 

  33. Amirthalingam S, Rangasamy J (2021) Chitosan-based biosensor fabrication and biosensing applications. In: Jayakumar R, Prabaharan M (eds) Chitosan for biomaterials III: structure-property relationships. Springer International Publishing, Cham, pp 233–255

  34. Jiang Y, Wu J (2019) Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40:2084–2097. https://doi.org/10.1002/elps.201900066

    Article  CAS  PubMed  Google Scholar 

  35. Ulfa M, Aristia KS, Prasetyoko D (2018) Synthesis of mesoporous silica materials via dual templating method from starch of waste rice and their application for drug delivery system. In: American Institute of Physics Inc., 3rd International Seminar on Chemistry: Green Chemistry and Its Role for Sustainability, Surabaya, Indonesia, vol 2049. AIP Publishing, p 20002

  36. Zhou H, Fan T, Ding J, Zhang D, Guo Q (2012) Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. Opt Express 20:A340–A350. https://doi.org/10.1364/OE.20.00A340

    Article  CAS  PubMed  Google Scholar 

  37. Li Y-N, Su J, Lv X-Y, Long Y-F, Wen Y-X (2015) Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries. Electrochim Acta 182:596–603

    Article  CAS  Google Scholar 

  38. Steinbach JC, Fait F, Mayer HA, Kandelbauer A (2023) Sol–Gel-controlled size and morphology of mesoporous silica microspheres using hard templates. ACS Omega 8:30273–30284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen NH, Truong-Thi N-H, Nguyen DTD, Ching YC, Huynh NT, Nguyen DH (2022) Non-ionic surfactants as co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications. Colloids Surf A Physicochem Eng Asp 655:130218. https://doi.org/10.1016/j.colsurfa.2022.130218

    Article  CAS  Google Scholar 

  40. Li Y, Bastakoti BP, Imura M, Tang J, Aldalbahi A, Torad NL, Yamauchi Y (2015) Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles. Chem A Eur J 21:6375–6380. https://doi.org/10.1002/chem.201406137

    Article  CAS  Google Scholar 

  41. Marsh AC, Mellott NP, Pajares-Chamorro N, Crimp M, Wren A, Hammer ND, Chatzistavrou X (2019) Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds. Bioact Mater 4:215–223. https://doi.org/10.1016/j.bioactmat.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shamim S, Hornyak GL, Crespy D, Kyaw H, Bora T (2022) Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step. Mater Res Bull 152:111842

    Article  CAS  Google Scholar 

  43. Nomura T, Morimoto Y, Ishikawa M, Tokumoto H, Konishi Y (2010) Synthesis of hollow silica microparticles from bacterial templates. Adv Powder Technol 21:8–12. https://doi.org/10.1016/j.apt.2009.07.005

    Article  CAS  Google Scholar 

  44. Dorval Courchesne N-M, Steiner SAIII, Cantú VJ, Hammond PT, Belcher AM (2015) Biotemplated silica and silicon materials as building blocks for micro- to nanostructures. Chem Mater 27:5361–5370. https://doi.org/10.1021/acs.chemmater.5b01844

    Article  CAS  Google Scholar 

  45. Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M (2014) Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 4:52156–52169

    Article  CAS  Google Scholar 

  46. Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2021) Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and Sol-Gel reactions. Carbohydr Polym 267:118186. https://doi.org/10.1016/J.CARBPOL.2021.118186

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by grants from the Russian Science Foundation, RSF № 23-23-00410, https://rscf.ru/project/23-23-00410. Electron microscopy characterization and determination of the local composition were performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by EAL, PVR, and EAS. The first draft of the manuscript was written by OAK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elizaveta A. Lantsova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantsova, E.A., Rybochkin, P.V., Saverina, E.A. et al. Biohybrid silicon-organic materials architecture obtained using various structure-affecting agents. J Sol-Gel Sci Technol 110, 134–141 (2024). https://doi.org/10.1007/s10971-024-06347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06347-3

Keywords

Navigation