Skip to main content

Advertisement

Log in

Effect of magnesium and iron incorporation on the physicochemical properties of a new sol-gel derived glass-ceramic

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we studied the effect of adding MgO and/or Fe2O3 alone or simultaneously on in vitro bioactivity of a new sol-gel derived glass-ceramic in the system 56% SiO2 – (38 – x – y)% CaO – x% MgO – y% Fe2O3 – 6% P2O5 [(x,y) = (0,0); (6,0); (0,2); (6,2)] wt%. The in vitro bioactivity of the materials was assessed in a simulated body fluid (SBF). The materials characterization by Differential Scanning Calorimetry (DSC), BET analysis, FTIR spectroscopy, XRD analysis, ICP-OES spectroscopy and SEM-EDS, before and after soaking in SBF, showed, an absence of changes in glass transition temperature (Tg) for Mg-doped materials, whereas we recorded an increase in Tg for the material doped with Fe only. A decrease in the ionic exchange kinetic between glass-ceramics and SBF was observed for all doped materials. For the Mg-doped materials, the hydroxyapatite (HA) formation rate was delayed contrary to the Mg-free materials. The detailed interpretation of the mechanism of the effect of Fe and Mg on the bioactivity of the glass-ceramics, with consideration of other explanations given in the literature, gives more understanding of how these chemical elements affect the physicochemical properties of the doped materials. We believe, this will help to define the optimal way to tailor the behavior of such biomaterials for biomedical applications.

Graphical Abstract

The magnesium incorporated in glass-ceramic retards the HA formation on its surface only if it is released in the physiological solution (SBF). The incorporation of the magnesium ions from SBF into the amorphous calcium phosphate (ACP) stabilizes it and inhibits its crystallization into HA. The formation rate of the HA layer is correlated to the concentration of magnesium ions in SBF.

Highlights

  • The glass transition temperature is not correlated to the in vitro bioactivity of the glass-ceramic.

  • The delay effect of magnesium on hydroxyapatite formation depends on whether the magnesium is released in SBF or not.

  • Hydroxyapatite formation rate on the glass-ceramic surface depends on the magnesium concentration in SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  2. Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  3. Kitsugi T, Yamamuro T, Nakamura T, Kokubo T (1989) Bone bonding behavior of MgO-CaO-SiO2-P2O5-CaF2 glass (mother glass of A.W-glass-ceramics). J Biomed Mater Res 23:631–648. https://doi.org/10.1002/jbm.820230607

    Article  CAS  PubMed  Google Scholar 

  4. Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa Y, Kotoura Y, Oka M (1991) Bone-bonding ability of P2O5-free CaO.SiO2 glasses. J Biomed Mater Res 25:357–365. https://doi.org/10.1002/jbm.820250307

    Article  CAS  PubMed  Google Scholar 

  5. Karlsson KH, Fröberg K, Ringbom T (1989) A structural approach to bone adhering of bioactive glasses. J Non-Crystalline Solids Proc Third Int Symp Glass 112:69–72. https://doi.org/10.1016/0022-3093(89)90495-X

    Article  ADS  Google Scholar 

  6. Ohura K, Ikenaga M, Nakamura T, Yamamuro T, Ebisawa Y, Kokubo T, Kotoura Y, Oka M (1991) A heat-generating bioactive glass-ceramic for hyperthermia. J Appl Biomater 2:153–159. https://doi.org/10.1002/jab.770020303

    Article  CAS  PubMed  Google Scholar 

  7. Kitsugi T, Yamamuro T, Nakamura T, Higashi S, Kakutani Y, Hyakuna K, Ito S, Kokubo T, Takagi M, Shibuya T (1986) Bone bonding behavior of three kinds of apatite containing glass ceramics. J Biomed Mater Res 20:1295–1307. https://doi.org/10.1002/jbm.820200906

    Article  CAS  PubMed  Google Scholar 

  8. Kitsugi T, Nakamura T, Yamamura T, Kokubu T, Shibuya T, Takagi M (1987) SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone: the variance of a Ca-P-rich layer. J Biomed Mater Res 21:1255–1271. https://doi.org/10.1002/jbm.820211008

    Article  CAS  PubMed  Google Scholar 

  9. Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of Ceravital-type glass-ceramic in the body. J Biomed Mater Res 25:1363–1370. https://doi.org/10.1002/jbm.820251105

    Article  CAS  PubMed  Google Scholar 

  10. Valerio P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948. https://doi.org/10.1016/j.biomaterials.2003.09.086

    Article  CAS  PubMed  Google Scholar 

  11. Li P, Nakanishi K, Kokubo T, de Groot K (1993) Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials 14:963–968. https://doi.org/10.1016/0142-9612(93)90186-6

    Article  CAS  PubMed  Google Scholar 

  12. Vallet-Regí M, Izquierdo-Barba I, Salinas AJ (1999) Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res 46:560–565. https://doi.org/10.1002/(sici)1097-4636(19990915)46:4<560::aid-jbm14>3.0.co;2-m

    Article  PubMed  Google Scholar 

  13. Vallet-Regí M, Salinas AJ, Román J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses. J Mater Chem 9:515–518. https://doi.org/10.1039/A808679F

    Article  Google Scholar 

  14. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 52:601–612. https://doi.org/10.1002/1097-4636(20001215)52:4<601::aid-jbm4>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  15. Jokinen M, Rahiala H, Rosenholm JB, Peltola T, Kangasniemi I (1998) Relation Between Aggregation and Heterogeneity of Obtained Structure in Sol-Gel Derived CaO-P2O5-SiO2. J Sol-Gel Sci Technol 12:159–167. https://doi.org/10.1023/A:1008642117227

    Article  CAS  Google Scholar 

  16. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  17. Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M (2018) Bioactive glasses entering the mainstream. Drug Discov Today 23:1700–1704. https://doi.org/10.1016/j.drudis.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  18. Letaief N, Lucas-Girot A, Oudadesse H, Meleard P, Pott T, Jelassi J, Dorbez-Sridi R (2014) Effect of aging temperature on the structure, pore morphology and bioactivity of new sol–gel synthesized bioglass. J Non-Crystalline Solids 402:194–199. https://doi.org/10.1016/j.jnoncrysol.2014.06.005

    Article  ADS  CAS  Google Scholar 

  19. Yan H, Zhang K, Blanford CF, Francis LF, Stein A (2001) In Vitro Hydroxycarbonate Apatite Mineralization of CaO−SiO2 Sol−Gel Glasses with a Three-Dimensionally Ordered Macroporous Structure. Chem Mater 13:1374–1382. https://doi.org/10.1021/cm000895e

    Article  CAS  Google Scholar 

  20. Arcos D, Greenspan DC, Vallet-Regí M (2002) Influence of the Stabilization Temperature on Textural and Structural Features and Ion Release in SiO2−CaO−P2O5 Sol−Gel Glasses. Chem Mater 14:1515–1522. https://doi.org/10.1021/cm011119p

    Article  CAS  Google Scholar 

  21. Cho S-B, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774. https://doi.org/10.1111/j.1151-2916.1995.tb08887.x

    Article  CAS  Google Scholar 

  22. Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78:2463–2468. https://doi.org/10.1111/j.1151-2916.1995.tb08686.x

    Article  CAS  Google Scholar 

  23. Aneb K, Oudadesse H, Khireddine H, Lefeuvre B, Merdrignac-Conanec O, Tessier F, Lucas A (2023) Study of the effect of ordered porosity and surface silanization on in vitro bioactivity of sol-gel-derived bioactive glasses. Mater Today Commun 34:104992. https://doi.org/10.1016/j.mtcomm.2022.104992

    Article  CAS  Google Scholar 

  24. Rocton N, Oudadesse H, Mosbahi S, Bunetel L, Pellen-Mussi P, Lefeuvre B (2019) Study of nano bioactive glass for use as bone biomaterial comparison with micro bioactive glass behaviour. IOP Conf Ser: Mater Sci Eng 628:012005. https://doi.org/10.1088/1757-899X/628/1/012005

    Article  CAS  Google Scholar 

  25. Brink M, Turunen T, Happonen RP, Yli-Urpo A (1997) Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res 37:114–121. https://doi.org/10.1002/(sici)1097-4636(199710)37:1<114::aid-jbm14>3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  26. Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence of the formation of calcium phosphate films on bioglass. J Biomed Mater Res 14:55–64. https://doi.org/10.1002/jbm.820140107

    Article  CAS  PubMed  Google Scholar 

  27. Mezahi F-Z, Lucas-Girot A, Oudadesse H, Harabi A (2013) Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel. J Non-Crystalline Solids 361:111–118. https://doi.org/10.1016/j.jnoncrysol.2012.10.013

    Article  ADS  CAS  Google Scholar 

  28. Mabrouk M, Mostafa A, Oudadesse H, Wers E, Lucas-Girot A, El-Gohary MI (2014) Comparative Study of Nanobioactive Glass Quaternary System 46S6. Bioceramics Dev Appl 4:1–4. https://doi.org/10.4172/2090-5025.1000072

    Article  Google Scholar 

  29. Letaief N, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R (2014) Influence of Synthesis Parameters on the Structure, Pore Morphology and Bioactivity of a New Mesoporous Glass. J Biosci Med 2:57–63. https://doi.org/10.4236/jbm.2014.22009

    Article  CAS  Google Scholar 

  30. Letaief N, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R (2014) New 92S6 mesoporous glass: Influence of surfactant carbon chain length on the structure, pore morphology and bioactivity. Mater Res Bull 60:882–889. https://doi.org/10.1016/j.materresbull.2014.08.048

    Article  CAS  Google Scholar 

  31. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Controlled Rel 193:282–295. https://doi.org/10.1016/j.jconrel.2014.04.026

    Article  CAS  Google Scholar 

  32. Rocton N, Oudadesse H, Lefeuvre B (2018) Comparison of Zn and Sr effects on thermal properties and on the excess entropy of doped glasses for use in the biomedical field. Thermochim Acta 668:58–64. https://doi.org/10.1016/j.tca.2018.08.008

    Article  CAS  Google Scholar 

  33. Oudadesse H, Dietrich E, Gal YL, Pellen P, Bureau B, Mostafa AA, Cathelineau G (2011) Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomed Mater 6:035006. https://doi.org/10.1088/1748-6041/6/3/035006

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Miola M, Verné E, Vitale-Brovarone C, Baino F (2016) Antibacterial bioglass-derived scaffolds: innovative synthesis approach and characterization. Int J Appl Glass Sci 7:238–247. https://doi.org/10.1111/ijag.12209

    Article  CAS  Google Scholar 

  35. Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 1:254–256. https://doi.org/10.1039/c2bm00116k

    Article  CAS  PubMed  Google Scholar 

  36. Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419. https://doi.org/10.1098/rsif.2011.0611

    Article  CAS  PubMed  Google Scholar 

  37. Tripathi H, Rath C, Kumar AS, Manna PP, Singh SP (2019) Structural, physico-mechanical and in-vitro bioactivity studies on SiO2–CaO–P2O5–SrO–Al2O3 bioactive glasses. Mater Sci Eng C 94:279–290. https://doi.org/10.1016/j.msec.2018.09.041

    Article  CAS  Google Scholar 

  38. Karakuzu-İkizler B, Terzioğlu P, Oduncu-Tekerek BS, Yücel S (2020) Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass. J Aust Ceram Soc 56:697–709. https://doi.org/10.1007/s41779-019-00388-6

    Article  CAS  Google Scholar 

  39. Deliormanlı AM (2015) Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci: Mater Med 26:67. https://doi.org/10.1007/s10856-014-5368-0

    Article  CAS  PubMed  Google Scholar 

  40. Dietrich E, Oudadesse H, Lucas-Girot A, Le Gal Y, Jeanne S, Cathelineau G (2008) Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. Appl Surf Sci First Int Symp Surf Interfaces Biomater 255:391–395. https://doi.org/10.1016/j.apsusc.2008.06.094

    Article  CAS  Google Scholar 

  41. El-Batal FH, Khalil EM, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. Silicon 2:41–47. https://doi.org/10.1007/s12633-010-9037-8

    Article  CAS  Google Scholar 

  42. Gupta N, Santhiya D, Murugavel S, Kumar A, Aditya A, Ganguli M, Gupta S (2018) Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids Surf A: Physicochem Eng Asp 538:393–403. https://doi.org/10.1016/j.colsurfa.2017.11.023

    Article  CAS  Google Scholar 

  43. Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry. Biometals 15:203–210. https://doi.org/10.1023/A:1016058229972

    Article  CAS  PubMed  Google Scholar 

  44. Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106. https://doi.org/10.1016/j.jtemb.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  45. Oudadesse H, Martin S, Derrien AC, Lucas-Girot A, Cathelineau G, Blondiaux G (2004) Determination of Ca, P, Sr and Mg in the synthetic biomaterial aragonite by NAA. J Radioanal Nucl Chem 262:479–483. https://doi.org/10.1023/B:JRNC.0000046781.15503.eb

    Article  CAS  Google Scholar 

  46. Okuma T (2001) Magnesium and bone strength. Nutrition 17:679–680. https://doi.org/10.1016/s0899-9007(01)00551-2

    Article  CAS  PubMed  Google Scholar 

  47. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62:175–184. https://doi.org/10.1002/jbm.10270

    Article  CAS  PubMed  Google Scholar 

  48. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62:99–105. https://doi.org/10.1002/jbm.10220

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira J, Correia RN, Fernandes M, Rocha J (2000) Influence of the CaO/MgO ratio on the structure of phase-separated glasses: A solid state29Si and31P MAS NMR study. J Non-Crystalline Solids 265:221–229. https://doi.org/10.1016/S0022-3093(99)00957-6

    Article  ADS  CAS  Google Scholar 

  50. Wu C, Chang J, Wang J, Ni S, Zhai W (2005) Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26:2925–2931. https://doi.org/10.1016/j.biomaterials.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  51. Webster TJ, Ergun C, Doremus RH, Bizios R (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J Biomed Mater Res 59:312–317. https://doi.org/10.1002/jbm.1247

    Article  CAS  PubMed  Google Scholar 

  52. Liu CC, Yeh JK, Aloia JF (1988) Magnesium directly stimulates osteoblast proliferation. J Bone Miner Res 3:104

    Google Scholar 

  53. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng: C 29:335–340. https://doi.org/10.1016/j.msec.2008.07.004

    Article  CAS  Google Scholar 

  54. Althoff J, Quint P, Krefting ER, Höhling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analyses. Histochemistry 74:541–552. https://doi.org/10.1007/BF00496668

    Article  CAS  PubMed  Google Scholar 

  55. Rude RK, Singer FR, Gruber HE (2009) Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr 28:131–141. https://doi.org/10.1080/07315724.2009.10719764

    Article  CAS  PubMed  Google Scholar 

  56. Notomi T, Kuno M, Hiyama A, Nozaki T, Ohura K, Ezura Y, Noda M (2017) Role of lysosomal channel protein TPC2 in osteoclast differentiation and bone remodeling under normal and low-magnesium conditions. J Biol Chem 292:20998–21010. https://doi.org/10.1074/jbc.M117.780072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dietrich E, Oudadesse H, Lucas-Girot A, Mami M (2009) In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A 88:1087–1096. https://doi.org/10.1002/jbm.a.31901

    Article  CAS  PubMed  Google Scholar 

  58. Moghanian A, Sedghi A, Ghorbanoghli A, Salari E (2018) The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceram Int 44:9422–9432. https://doi.org/10.1016/j.ceramint.2018.02.159

    Article  CAS  Google Scholar 

  59. Erol M, Özyuguran A, Çelebican Ö (2010) Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn-Mg Co-Doped Bioactive Glasses. Chem Eng Technol 33:1066–1074. https://doi.org/10.1002/ceat.200900495

    Article  CAS  Google Scholar 

  60. Ma J, Chen CZ, Wang DG, Jiao Y, Shi JZ (2010) Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surf B: Biointerfaces 81:87–95. https://doi.org/10.1016/j.colsurfb.2010.06.022

    Article  CAS  PubMed  Google Scholar 

  61. Moya JS, Tomsia AP, Pazo A, Santos C, Guitián F (1994) In vitro formation of hydroxylapatite layer in a MgO-containing glass. J Mater Sci: Mater Med 5:529–532. https://doi.org/10.1007/BF00124885

    Article  CAS  Google Scholar 

  62. Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M (2004) Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 134:3061–3067. https://doi.org/10.1093/jn/134.11.3061

    Article  CAS  PubMed  Google Scholar 

  63. Parelman M, Stoecker B, Baker A, Medeiros D (2006) Iron Restriction Negatively Affects Bone in Female Rats and Mineralization of hFOB Osteoblast Cells. Exp Biol Med (Maywood) 231:378–386. https://doi.org/10.1177/153537020623100403

    Article  CAS  PubMed  Google Scholar 

  64. Díaz-Castro J, López-Frías MR, Campos MS, López-Frías M, Alférez MJM, Nestares T, Ojeda ML, López-Aliaga I (2012) Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 51:241–247. https://doi.org/10.1007/s00394-011-0212-5

    Article  CAS  PubMed  Google Scholar 

  65. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, Chalès G (2005) Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int 16:1809–1814. https://doi.org/10.1007/s00198-005-1934-0

    Article  CAS  PubMed  Google Scholar 

  66. Yamasaki K, Hagiwara H (2009) Excess iron inhibits osteoblast metabolism. Toxicol Lett 191:211–215. https://doi.org/10.1016/j.toxlet.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  67. Melchers S, Uesbeck T, Winter O, Eckert H, Eder D (2016) Effect of Aluminum Ion Incorporation on the Bioactivity and Structure in Mesoporous Bioactive Glasses. Chem Mater 28:3254–3264. https://doi.org/10.1021/acs.chemmater.5b04117

    Article  CAS  Google Scholar 

  68. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  CAS  Google Scholar 

  69. Kokubo T, Ebisawa Y, Sugimoto Y, Kiyama M, Ohura K, Yamamuro T, Hiraoka M, Abe M (1992) Preparation of bioactive and ferromagnetic glass-ceramic for hyperthermia. Bioceramics 5:213–223

    Google Scholar 

  70. Da Li G, Zhou DL, Lin Y, Pan TH, Chen GS, Yin QD (2010) Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng: C 30:148–153. https://doi.org/10.1016/j.msec.2009.09.011

    Article  CAS  Google Scholar 

  71. Martin RA, Twyman HL, Rees GJ, Smith JM, Barney ER, Smith ME, Hanna JV, Newport RJ (2012) A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Phys Chem Chem Phys 14:12105–12113. https://doi.org/10.1039/C2CP41725A

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava A, Pyare R, Singh S (2012) In vitro bioactivity and physical - mechanical properties of Fe2O3 substituted 45S5 Bioactive Glasses and Glass – ceramics. Int J Sci Eng Res 2:249–258

    CAS  Google Scholar 

  73. Sales BC, Boatner LA (1984) Lead phosphate glass as a stable medium for the immobilization and disposal of high-level nuclear waste. Mater Lett 2:301–304. https://doi.org/10.1016/0167-577X(84)90038-7

    Article  CAS  Google Scholar 

  74. El-Meliegy E, Mabrouk M, El-Sayed SA, Abd El-Hady BM, Shehata MR, Hosny WM (2018) Novel Fe2O3-doped glass/chitosan scaffolds for bone tissue replacement. Ceram Int 44:9140–9151. https://doi.org/10.1016/j.ceramint.2018.02.122

    Article  CAS  Google Scholar 

  75. Singh R, Kothiyal G, Srinivasan A (2009) In vitro evaluation of bioactivity of CaO–SiO2–P2O5–Na2O–Fe2O3 glasses. Appl Surf Sci 255:6827–6831. https://doi.org/10.1016/j.apsusc.2009.02.089

    Article  ADS  CAS  Google Scholar 

  76. Li R, Clark AE, Hench LL In Chemical Processing of Advanced Materials, Hench L.L. and West J.K. eds John Wiley & Sons, New York, 1992, 627.

  77. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T, Yamamuro T (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75:2094–2097. https://doi.org/10.1111/j.1151-2916.1992.tb04470.x

    Article  CAS  Google Scholar 

  78. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15. https://doi.org/10.1002/jbm.820280103

    Article  CAS  PubMed  Google Scholar 

  79. Jones RW (1989) Fundamental Principles of Sol–Gel Technology, first ed. The Institute of Metals, London

    Google Scholar 

  80. Brinker C, Scherer G (1990) Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, first ed. Academic Press, San Diego

    Google Scholar 

  81. Balamurugan A, Balossier G, Michel J, Kannan S, Benhayoune H, Rebelo AHS, Ferreira JMF (2007) Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system–preparation and in vitro characterization. J Biomed Mater Res – Part B: Appl Biomater 83:546–553. https://doi.org/10.1002/jbm.b.30827

    Article  CAS  Google Scholar 

  82. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734. https://doi.org/10.1002/jbm.820240607

    Article  CAS  PubMed  Google Scholar 

  83. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  84. Siqueira RL, Costa LC, Schiavon MA, de Castro DT, dos Reis AC, Peitl O, Zanotto ED (2017) Bioglass® and resulting crystalline materials synthesized via an acetic acid-assisted sol–gel route. J Sol-Gel Sci Technol 83:165–173

    Article  CAS  Google Scholar 

  85. Morsi, R., Ibrahim, S., Morsi, M., 2014. Electrical properties of silicate glasses of low level gadolinium oxide doping including dielectric and infrared measures. J Mater Sci: Mater Electr 26. https://doi.org/10.1007/s10854-014-2556-0

  86. ElBatal HA, Azooz MA, Khalil EMA, Soltan Monem A, Hamdy YM (2003) Characterization of some bioglass–ceramics. Mater Chem Phys 80:599–609. https://doi.org/10.1016/S0254-0584(03)00082-8

    Article  CAS  Google Scholar 

  87. Wang M, Cheng J, Li M, He F (2011) Structure and properties of soda lime silicate glass doped with rare earth. Phys B: Condens Matter 406:187–191. https://doi.org/10.1016/j.physb.2010.10.040

    Article  ADS  CAS  Google Scholar 

  88. El-Alaily NA (2003) Study of some properties of lithium silicate glass and glass ceramics containing blast furnace slag. Glass Technol 44:30–35

    CAS  Google Scholar 

  89. Li Y, Liang K, Cao J, Xu B (2010) Spectroscopy and structural state of V4+ ions in lithium aluminosilicate glass and glass–ceramics. J Non-Crystalline Solids 356:502–508. https://doi.org/10.1016/j.jnoncrysol.2009.12.018

    Article  ADS  CAS  Google Scholar 

  90. Annapurna K, Das M, Kundu P, Dwivedi RN, Buddhudu S (2005) Spectral properties of Eu3+: ZnO–B2O3–SiO2 glasses. J Mol Struct 741:53–60. https://doi.org/10.1016/j.molstruc.2005.01.062

    Article  ADS  CAS  Google Scholar 

  91. Jastrzębski W, Sitarz M, Rokita M, Bułat K (2011) Infrared spectroscopy of different phosphates structures. Spectrochim Acta Part A: Mol Biomol Spectrosc, Xth Int Conf Mol Spectrosc 79:722–727. https://doi.org/10.1016/j.saa.2010.08.044

    Article  ADS  CAS  Google Scholar 

  92. Feller S, Lodden G, Riley A, Edwards T, Croskrey J, Schue A, Liss D, Stentz D, Blair S, Kelley M, Smith G, Singleton S, Affatigato M, Holland D, Smith ME, Kamitsos EI, Varsamis CPE, Ioannou E (2010) A multispectroscopic structural study of lead silicate glasses over an extended range of compositions. J Non Crystalline Solids 356:304–313. https://doi.org/10.1016/j.jnoncrysol.2009.12.003

    Article  ADS  CAS  Google Scholar 

  93. Elgayar I, Aliev A, Boccaccini A, Hill R (2005) Structural analysis of bioactive glasses. J Non-Crystalline Solids 351:173–183. https://doi.org/10.1016/j.jnoncrysol.2004.07.067

    Article  ADS  CAS  Google Scholar 

  94. Lucas-Girot A, Mezahi F-Z, Mami M, Oudadesse H, Harabi A, Le Floch M (2011) Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5. J Non-Crystalline Solids 357:3322–3327. https://doi.org/10.1016/j.jnoncrysol.2011.06.002

    Article  ADS  CAS  Google Scholar 

  95. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  96. Mami M, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R, Mezahi F, Dietrich E (2008) Investigation of the surface reactivity of a sol–gel derived glass in the ternary system SiO2–CaO–P2O5. Appl Surf Sci 254:7386–7393. https://doi.org/10.1016/j.apsusc.2008.05.340

    Article  ADS  CAS  Google Scholar 

  97. Gentleman E, Stevens MM, Hill RG, Brauer DS (2013) Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro. Acta Biomaterialia 9:5771–5779. https://doi.org/10.1016/j.actbio.2012.10.043

    Article  CAS  PubMed  Google Scholar 

  98. Popescu RA, Magyari K, Vulpoi A, Trandafir DL, Licarete E, Todea M, Ştefan R, Voica C, Vodnar DC, Simon S, Papuc I, Baia L (2016) Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomater Sci 4:1252–1265. https://doi.org/10.1039/c6bm00270f

    Article  CAS  PubMed  Google Scholar 

  99. Stan G, Pasuk I, Husanu M-A, Enculescu I, Pina S, Lemos A, Tulyaganov D, El Mabrouk K, Ferreira J (2011) Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature. J Mater Sci Mater Med 22:2693–710. https://doi.org/10.1007/s10856-011-4441-1

    Article  CAS  PubMed  Google Scholar 

  100. Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. J Non-Crystalline Solids 356:1470–1478. https://doi.org/10.1016/j.jnoncrysol.2010.04.040

    Article  ADS  CAS  Google Scholar 

  101. Oyane A, Onuma K, Ito A, Kim H-M, Kokubo T, Nakamura T (2003) Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res - Part A 64:339–348. https://doi.org/10.1002/jbm.a.10426

    Article  CAS  Google Scholar 

  102. Jutarosaga T, Jeoung JS, Seraphin S (2005) Infrared spectroscopy of Si–O bonding in low-dose low-energy separation by implanted oxygen materials. Thin Solid Films 476:303–311. https://doi.org/10.1016/j.tsf.2004.10.006

    Article  ADS  CAS  Google Scholar 

  103. Luginina M, Orru R, Cao G, Grossin D, Brouillet F, Chevallier G, Thouron C, Drouet C (2020) First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: toward highly-resorbable reactive bioceramics. J Mater Chem B 8:629–635. https://doi.org/10.1039/C9TB02121C

    Article  CAS  PubMed  Google Scholar 

  104. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  105. Vecstaudza J, Gasik M, Locs J (2019) Amorphous calcium phosphate materials: Formation, structure and thermal behaviour. J Eur Ceram Soc 39:1642–1649. https://doi.org/10.1016/j.jeurceramsoc.2018.11.003

    Article  CAS  Google Scholar 

  106. Termine JD, Posner AS (1966) Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 211:268–270. https://doi.org/10.1038/211268a0

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Crystalline Solids 143:84–92. https://doi.org/10.1016/S0022-3093(05)80556-3

    Article  ADS  CAS  Google Scholar 

  108. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1–201

    Article  CAS  PubMed  Google Scholar 

  109. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T, Yamamuro T (1993) Process of formation of bone-like apatite layer on silica gel. J Mater Sci: Mater Med 4:127–131. https://doi.org/10.1007/BF00120381

    Article  CAS  Google Scholar 

  110. Manoj M, Mangalaraj D, Ponpandian N, Viswanathan C (2015) Core–shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in vitro cell viability studies against leukaemia cancer cells (K562). RSC Adv 5:48705–48711. https://doi.org/10.1039/C5RA04663G

    Article  ADS  CAS  Google Scholar 

  111. Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED (2016) Biosilicate® — A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non-Crystalline Solids Glasses Healthc 432:90–110. https://doi.org/10.1016/j.jnoncrysol.2015.03.022

    Article  ADS  CAS  Google Scholar 

  112. Peitl O, Zanotto E, Hench L (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J Non-Crystalline Solids 292:115–126. https://doi.org/10.1016/S0022-3093(01)00822-5

    Article  ADS  CAS  Google Scholar 

  113. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017. https://doi.org/10.1126/science.1067404

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Wang X, Kong R, Pan X, Xu H, Xia D, Shan H, Lu JR (2009) Role of Ovalbumin in the Stabilization of Metastable Vaterite in Calcium Carbonate Biomineralization. J Phys Chem B 113:8975–8982. https://doi.org/10.1021/jp810281f

    Article  CAS  PubMed  Google Scholar 

  115. Andersen FA, Brecevic L (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand 45:1018–1024

    Article  CAS  Google Scholar 

  116. Lei B, Chen X, Wang Y, Zhao N, Du C, Fang L (2010) Influence of sintering temperature on pore structure and apatite formation of a sol-gel-derived bioactive glass. J Am Ceram Soc 93:32–35. https://doi.org/10.1111/j.1551-2916.2009.03358.x

    Article  CAS  Google Scholar 

  117. Lee I-H, Shin S-H, Foroutan F, Lakhkar NJ, Gong M-S, Knowles JC (2013) Effects of magnesium content on the physical, chemical and degradation properties in a MgO−CaO−Na2O−P2O5 glass system. J Non-Crystalline Solids 363:57–63. https://doi.org/10.1016/j.jnoncrysol.2012.11.036

    Article  ADS  CAS  Google Scholar 

  118. Labbilta T, Mesnaoui M, Aouad H, Abouliatim Y, Khouloud M, Abielaala L (2020) Study of the effect of calcium substitution by magnesium in the vitreous system 3P2O5-2K2O-(1 - x) CaO-x MgO. Mater (Basel) 13:2637. https://doi.org/10.3390/ma13112637

    Article  ADS  CAS  Google Scholar 

  119. De Araujo Bastos Santana L, Oliveira Junior PH, Damia C, dos Santos Tavares D, dos Santos EA (2021) Bioactivity in SBF versus trace element effects: The isolated role of Mg2+ and Zn2+ in osteoblast behavior. Mater Sci Eng: C 118:111320. https://doi.org/10.1016/j.msec.2020.111320

    Article  CAS  Google Scholar 

  120. Ouellette RJ, Rawn JD (2015) 3 - Introduction to Organic Reaction Mechanisms. In: Ouellette RJ, Rawn JD (Eds.) Organic Chemistry Study Guide. Elsevier, Boston, p 31–46. https://doi.org/10.1016/B978-0-12-801889-7.00003-0

  121. Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Crystalline Solids 356:517–524. https://doi.org/10.1016/j.jnoncrysol.2009.04.074

    Article  ADS  CAS  Google Scholar 

  122. Arslan G, Karasu B, Dolekcekic E, Kaya G, Gunkaya G (2009) Effect of transition metal oxide additions on the chemical durability of SrO-MgO-ZrO2 SiO2 glasses. European. J Glass Sci Technol Part a Glass Technol 50:17–24

    CAS  Google Scholar 

  123. Cicconi MR, Giuli G, Ertel-Ingrisch W, Paris E, Dingwell DB (2015) The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. Am Mineralogist 100:1610–1619. https://doi.org/10.2138/am-2015-5155

    Article  ADS  Google Scholar 

  124. Kuryaeva RG (2009) The state of magnesium in silicate glasses and melts. Glass Phys Chem 35:378–383. https://doi.org/10.1134/S1087659609040051

    Article  CAS  Google Scholar 

  125. Burkhard D (2000) Iron-bearing silicate glasses at ambient conditions. J Non-Crystalline Solids 275:175–188. https://doi.org/10.1016/S0022-3093(00)00252-0

    Article  ADS  CAS  Google Scholar 

  126. Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown Jr G-E (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Crystalline Solids 344:176–188. https://doi.org/10.1016/j.jnoncrysol.2004.07.050

    Article  ADS  CAS  Google Scholar 

  127. Mysen BO, Seifert F, Virgo D (1980) Structure and redox equilibria of iron-bearing silicate melts. Am Mineralogist 65:867–884

    CAS  Google Scholar 

  128. Virgo D, Mysen BO (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: A57Fe Mössbauer study. Phys Chem Miner 12:65–76. https://doi.org/10.1007/BF01046829

    Article  ADS  CAS  Google Scholar 

  129. Holland D, Mekki A, Gee IA, McConville CF, Johnson JA, Johnson CE, Appleyard P, Thomas M (1999) The structure of sodium iron silicate glass – a multi-technique approach. J Non-Crystalline Solids 253:192–202. https://doi.org/10.1016/S0022-3093(99)00353-1

    Article  ADS  CAS  Google Scholar 

  130. Wang Z, Ni W, Jia Y, Zhu L, Huang X (2010) Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J Non Crystalline Solids 356:1554–1558. https://doi.org/10.1016/j.jnoncrysol.2010.05.063

    Article  ADS  CAS  Google Scholar 

  131. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282. https://doi.org/10.1039/B814292K

    Article  CAS  Google Scholar 

  132. Borges R, Oliveira JSS, Queiroz AP, Zambanini T, Hanashiro AM, Lima NB, Schneider JF, Marchi J (2023) On the structure of Ag-containing sol-gel bioactive glasses: A surface crystal growth of metallic silver removes its network modifier role in the glass structure. Open Ceram 16:100449. https://doi.org/10.1016/j.oceram.2023.100449

    Article  CAS  Google Scholar 

  133. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) In vitro degradability and bioactivity of mesoporous CaO-MgO-P2O5-SiO2 glasses synthesized by sol–gel method. J Sol-Gel Sci Technol 1:69–76. https://doi.org/10.1007/s10971-010-2159-z

    Article  CAS  Google Scholar 

  134. Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L (2012) Sol-gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci: Mater Med 23:1849–1866. https://doi.org/10.1007/s10856-012-4667-6

    Article  CAS  PubMed  Google Scholar 

  135. Nawaz Q, de Pablos-Martín A, Martins de Souza e Silva J, Hurle K, Jaimes ATC, Brauer DS, Boccaccini AR (2020) New insights into the crystallization process of sol-gel–derived 45S5 bioactive glass. J Am Ceram Soc 103:4234–4247. https://doi.org/10.1111/jace.17124

    Article  CAS  Google Scholar 

  136. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507. https://doi.org/10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  137. Soulié J, Nedelec JM, Jallot E (2009) Influence of Mg doping on the early steps of physico-chemical reactivity of sol–gel derived bioactive glasses in biological medium. Phys Chem Chem Phys 11:10473–10483. https://doi.org/10.1039/B913771H

    Article  PubMed  Google Scholar 

  138. Ding H, Pan H, Xu X, Tang R (2014) Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst Growth Des 14:763–769. https://doi.org/10.1021/cg401619s

    Article  CAS  Google Scholar 

  139. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluids. J Biomed Mater Res Part A 65:188–195. https://doi.org/10.1002/jbm.a.10482

    Article  CAS  Google Scholar 

  140. Chajri S, Bouhazma S, Adouar I, Herradi S, Khaldi M, El Bali B, Lachkar M (2019) Synthesis, characterization and evaluation of bioactivity of glasses in the CaO-SiO2 -P2O5 -MgO system with different CaO/MgO ratios. J Phys: Conf Ser 1292:012013. https://doi.org/10.1088/1742-6596/1292/1/012013

    Article  CAS  Google Scholar 

  141. Blumenthal NC, Posner AS (1973) Hydroxyapatite: Mechanism of formation and properties. Calcif Tissue Res 13:235–243. https://doi.org/10.1007/BF02015413

    Article  CAS  PubMed  Google Scholar 

  142. Eanes ED, Gillessen IH, Posner AS (1965) Intermediate States in the Precipitation of Hydroxyapatite. Nature 208:365–367. https://doi.org/10.1038/208365a0

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Oliveira JM, Correia RN, Fernandes MH (2002) Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials 23:371–379. https://doi.org/10.1016/S0142-9612(01)00115-6

    Article  CAS  PubMed  Google Scholar 

  144. George AM, Stebbins JF (1998) Structure and dynamics of magnesium in silicate melts: A high-temperature 25Mg NMR study. Am Mineralogist 83:1022–1029. https://doi.org/10.2138/am-1998-9-1010

    Article  ADS  CAS  Google Scholar 

  145. Shimoda K, Tobu Y, Hatakeyama M, Nemoto T, Saito K (2007) Structural investigation of Mg local environments in silicate glasses by ultra-high field Mg-25 3QMAS NMR spectroscopy. Am Mineralogist 92:695–698. https://doi.org/10.2138/am.2007.2535

    Article  ADS  CAS  Google Scholar 

  146. Zhao Y, Song M, Liu J (2008) Characteristics of bioactive glass coatings obtained by pulsed laser deposition. Surf Interface Anal 40:1463–1468. https://doi.org/10.1002/sia.2925

    Article  CAS  Google Scholar 

  147. Tabia Z, El Mabrouk K, Bricha M, Nouneh K (2019) Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity. RSC Adv 9:12232–12246. https://doi.org/10.1039/c9ra01133a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boskey AL, Posner AS (1974) Magnesium stabilization of amorphous calcium phosphate: A kinetic study. Mater Res Bull 9:907–916. https://doi.org/10.1016/0025-5408(74)90169-X

    Article  CAS  Google Scholar 

  149. Abbona F, Franchini-Angela M (1990) Crystallization of calcium and magnesium phosphates from solutions of low concentration. J Cryst Growth 104:661–671. https://doi.org/10.1016/0022-0248(90)90009-A

    Article  ADS  CAS  Google Scholar 

  150. Cao X, Harris W (2008) Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environ Sci Technol 42:436–442. https://doi.org/10.1021/es0716709

    Article  ADS  CAS  PubMed  Google Scholar 

  151. Bigi A, Falini G, Foresti E, Ripamonti A, Gazzano M, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78. https://doi.org/10.1016/0162-0134(93)80049-F

    Article  CAS  Google Scholar 

  152. Yang X, Xie B, Wang L, Qin Y, Henneman Z, Nancollas G (2011) Influence of magnesium ions and amino acids on the nucleation and growth of hydroxyapatite. CrystEngComm 13:1153–1158. https://doi.org/10.1039/C0CE00470G

    Article  CAS  Google Scholar 

  153. Vernè E, Bretcanu O, Balagna C, Bianchi C, Cannas M, Gatti S, Vitale-Brovarone C (2008) Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J Mater Sci Mater Med 20:75–87. https://doi.org/10.1007/s10856-008-3537-8

    Article  CAS  PubMed  Google Scholar 

  154. Pérez-Pariente J, Balas F, Vallet-Regí M (2000) Surface and chemical study of SiO2·P2O5·CaO·(MgO) bioactive glasses. Chem Mater 12:750–755. https://doi.org/10.1021/cm9911114

    Article  CAS  Google Scholar 

  155. Abbona F, Baronnet A (1996) A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J Cryst Growth 165:98–105. https://doi.org/10.1016/0022-0248(96)00156-X

    Article  ADS  CAS  Google Scholar 

  156. Jallot E, Moretto PH (2006) Characterisation, by the PIXE method, of trace elements during physicochemical reactions at the periphery of bioactive glass pastilles in contact with biological fluids. Instrum Sci Technol 34:405–416. https://doi.org/10.1080/10739140600648803

    Article  CAS  Google Scholar 

  157. Kibalczyc W, Christoffersen J, Christoffersen MR, Zielenkiewicz A, Zielenkiewicz W (1990) The effect of magnesium ions on the precipitation of calcium phosphates. J Cryst Growth 106:355–366. https://doi.org/10.1016/0022-0248(90)90080-5

    Article  ADS  CAS  Google Scholar 

  158. Ebisawa Y, Sugimoto Y, Hayashi T, Kokubo T, Ohura K, Yamamuro T (1991) Crystallization of (FeO, Fe2O3)-CaO-SiO2 glasses and magnetic properties of their crystallized products. J Ceram Soc Jpn 99:7–13. https://doi.org/10.2109/jcersj.99.7

    Article  CAS  Google Scholar 

  159. Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238. https://doi.org/10.1016/j.biomaterials.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  160. Okamoto Y, Hidaka S (1994) Studies on calcium phosphate precipitation: effects of metal ions used in dental materials. J Biomed Mater Res 28:1403–1410. https://doi.org/10.1002/jbm.820281204

    Article  CAS  PubMed  Google Scholar 

  161. Ebisawa Y, Kokubo T, Ohura K, Yamamuro T (1990) Bioactivity of CaO·SiO2-based glasses:in vitro evaluation. J Mater Sci: Mater Med 1:239–244. https://doi.org/10.1007/BF00701083

    Article  CAS  Google Scholar 

  162. Krajewski A, Ravaglioli A, Fabbri B, Azzoni CB (1987) Doping influence on the interaction between a bioactive glass and a simulated physiological solution: Chemical and EPR tests. J Mater Sci 22:1228–1234. https://doi.org/10.1007/BF01233113

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Loïc Joanny (CMEBA) for SEM-EDS analysis, Odile Merdrignac-Conanec (ICSR, Laboratory “Glasses and Ceramics”) for BET analysis and Christophe Calers (ICSR, Laboratory “Glasses and Ceramics”) for XRD analysis at the University of Rennes.

Author contributions

All authors have participated in the conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content, and approval of the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aneb.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneb, K., Oudadesse, H., Khireddine, H. et al. Effect of magnesium and iron incorporation on the physicochemical properties of a new sol-gel derived glass-ceramic. J Sol-Gel Sci Technol 109, 502–522 (2024). https://doi.org/10.1007/s10971-023-06290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06290-9

Keywords

Navigation