Skip to main content
Log in

Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The surface reactivity of different sets of glasses and glass-ceramics belonging to the SiO2–P2O5–CaO–MgO–K2O–Na2O system have been investigated. The attention was focused on the role of their composition on the bioactivity kinetics, in terms of pH modifications, silica-gel formation and its evolution toward hydroxycarbonatoapatite, after different times of soaking in simulated body fluid. Glasses and glass ceramics have been characterized by thermal analysis, SEM-EDS observations and phase analysis (XRD). XPS measurements have been carried out on the most representative set of sample in order to evaluate the evolution of the surface species during the growth of silica-gel and hydroxycarbonatoapatite. The response of murine fibroblast 3T3 to the material before and after a conditioning pre-treatment (immersion in SBF) has been investigated on the same set of samples in order to point out the role of the bioactivity mechanism on cell viability. The main differences among the various glasses have been related to the modifier oxides ratio and to the MgO content, which seems to have an influence on the glass stability, both in terms of thermal properties and surface reactivity. The surface characterization and in vitro tests revealed few variations in the reactivity of the different glasses and glass-ceramics in their pristine form. On the contrary, the different surface properties before and after the pre-treatment in SBF seem to play a role on the biocompatibility of both glass and glass-ceramics, due to the different ion release and hydrophilicity of the surfaces, affecting both cell viability and protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Cao, L.L. Hench, Ceram. Int. 22, 493 (1996). doi:10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  2. L.L. Hench, J. Am. Ceram. Soc. 81(7), 1705 (1998)

    CAS  Google Scholar 

  3. H. Kim, F. Miyaji, T. Kokubo, J. Am. Ceram. Soc. 79(9), 2405 (1995). doi:10.1111/j.1151-2916.1995.tb08677.x

    Article  Google Scholar 

  4. T. Kokubo, J. Non-Cryst. Sol. 120, 138 (1990)

    Article  CAS  ADS  Google Scholar 

  5. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  PubMed  CAS  Google Scholar 

  6. L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi:10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  7. J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 16, 849 (1995). doi:10.1016/0142-9612(95)94146-C

    Article  PubMed  CAS  Google Scholar 

  8. Y. Ebisawa, T. Kokubo, K. Ohura, T. Yamamuro, J. Mater. Sci. Mater. Med. 1, 239 (1990). doi:10.1007/BF00701083

    Article  CAS  Google Scholar 

  9. J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 23, 371 (2002). doi:10.1016/S0142-9612(01)00115-6

    Article  PubMed  CAS  Google Scholar 

  10. A.J. Salinas, J. Romàn, M. Vallet-Regi, J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 21, 251 (2000). doi:10.1016/S0142-9612(99)00150-7

    Article  PubMed  CAS  Google Scholar 

  11. M. Bosetti, M. Cannas, Biomaterials 26, 3873 (2005). doi:10.1016/j.biomaterials.2004.09.059

    Article  PubMed  CAS  Google Scholar 

  12. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  PubMed  CAS  Google Scholar 

  13. P.W. Mcmillan, Glass-ceramics (Academic Press, London, 1979)

  14. R.M. Smith, A.E. Martell, R.J. Motekaitis, NIST critical selected stability constants of metal complexes databases, Version 6 (2001)

  15. C.D. Wagner, D.E. Passoja, H.A. Six, H.F. Hillery, J.A. Taylor, T.G. Kinisky et al., J. Vac. Sci. Technol. 21(4), 933 (1982). doi:10.1116/1.571870

    Article  CAS  ADS  Google Scholar 

  16. G. Cappelletti, C.L. Bianchi, S. Ardizzone, Appl. Surf. Sci. 253, 519 (2006). doi:10.1016/j.apsusc.2005.12.098

    Article  CAS  ADS  Google Scholar 

  17. H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, Anal. Chem. 72(13), 2886–2894 (2000). doi:10.1021/ac990812h

    Article  PubMed  CAS  Google Scholar 

  18. Y.W. Gu, K.A. Khor, P. Cheang, Biomaterials 25(18), 4127 (2004). doi:10.1016/j.biomaterials.2003.11.030

    Article  PubMed  CAS  Google Scholar 

  19. N.G. Maroudas, Nature 244, 353 (1973). doi:10.1038/244353a0

    Article  PubMed  CAS  ADS  Google Scholar 

  20. L. Tang, J.W. Eaton, Am. J. Clin. Pathol. 103(4), 466 (1995)

    PubMed  CAS  Google Scholar 

  21. J.L. Bohnert, T.A. Horbett, J. Colloid Interface Sci. 111, 363 (1986)

    Article  CAS  Google Scholar 

  22. L. Tang et al., Biomaterials 20(15), 1365 (1999). doi:10.1016/S0142-9612(99)00034-4

    Article  PubMed  CAS  Google Scholar 

  23. L. Tang, J.W. Eaton, Mol. Med. 5(6), 351 (1999)

    PubMed  CAS  Google Scholar 

  24. V. Balasubramanian et al., J. Biomed. Mater. Res. 44(3), 253 (1999). doi:10.1002/(SICI)1097-4636(19990305)44:3<253::AID-JBM3>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  25. J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1992)

  26. K.R. Chintalacharuvu, L.U. Vuong, L.A. Loi, J.W. Larrick, S.L. Morrison, Clin. Immunol. 101(1), 21 (2001). doi:10.1006/clim.2001.5083

    Article  PubMed  CAS  Google Scholar 

  27. S. Hisano, M. Matsushita, T. Fujita, Y. Endo, S. Takebayashi, Am. J. Kidney Dis. 38(5), 1082 (2001). doi:10.1053/ajkd.2001.28611

    Article  PubMed  CAS  Google Scholar 

  28. J. Wettero, T. Bengtsson, P. Tengvall, J. Biomed. Mater. Res. 51, 742 (2000). doi:10.1002/1097-4636(20000915)51:4<742::AID-JBM24>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  29. C.S. Rinder, H.M. Rinder, K. Johnson, M. Smith, D.L. Lee, J. Tracey et al., Circulation 100, 553 (1999)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ministero Italiano della Ricerca e dell’Università (MIUR) (PRIN 2003, PRIN 2006) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Verné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verné, E., Bretcanu, O., Balagna, C. et al. Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. J Mater Sci: Mater Med 20, 75–87 (2009). https://doi.org/10.1007/s10856-008-3537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3537-8

Keywords

Navigation