Skip to main content
Log in

Effect of co-doping on structural, microstructural, dielectric, impedance and magnetic properties of sol-gel synthesized Bi(1-x)TrxFe(1-y)MnyO3 (Tr = Cr, Ni, Zn, Cu) multiferroic nanoceramics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano-crystalline powders of Bi(1-x)TrxFe(1-y)MnyO3 (where x & y = 0, 0.05 and Tr = Cr, Ni, Zn, Cu) were prepared using sol-gel autocombustion method. Structural studies on the calcined nanopowders using X-ray diffraction and Fourier transform infrared spectroscopy confirm the perovskite phase with rhombohedrally distorted structures. Microstructural studies using scanning electron microscopy and energy dispersive spectroscopy on the sintered surfaces display uniformly knitted fine grained microstructures with thin grain boundaries and the presence of all element’s constituent for the synthesis of the samples, respectively. Dielectric properties were evaluated at various frequencies and temperatures and found to follow space charge polarization with significantly reduced dielectric losses at all frequency ranges investigated. Impedance study on the samples aids in understanding the contributions of electrical conductivity and interfacial polarization, and the results verify the claims explained during the dielectric property investigation. Magnetic studies on the samples reveal that among all the samples, Cr/Mn co-doped (BCrFMO) sample shows significant enhancement in the value of saturation magnetization (3.718 emu/g) while Ni/Mn co-doped (BNiFMO) sample demonstrates higher coercivity (259.734 Oe) at room temperature. With all enhanced structural, microstructural, dielectric and magnetic order through the influence of co-doing, these materials are highly recommended for spintronic, multifunctional memories, sensors, and actuators.

Graphical Abstract

Highlights

  • Wet chemical synthesis of sol-gel autocombustion produced Bi(1-x)TrxFe(1-y)MnyO3 (where x & y = 0, 0.05 and Tr = Cr, Ni, Zn, Cu) multiferroic samples with co-doping effect were studied for the first time.

  • XRD and FTIR data shows that all samples have rhombohedral-symmetric single-phase perovskite structures.

  • Co-doping boosts magnetic order in all Cr, Ni, Zn, Cu and Mn co-doped samples.

  • Highest magnetization value of 3.718 emu/g was evident in Cr-Mn co-doped bismuth ferrite (BCrFMO) sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759

    Article  CAS  Google Scholar 

  2. Khomskii D (2009) Physics 2:20

    Article  Google Scholar 

  3. Catalan G, Scott JF (2009) Adv Mater 21:2463

    Article  CAS  Google Scholar 

  4. Marzouk M, Hashem HM, Soltan S, Ramadan AA (2020) J Mat Sci: Mat Elect 31:5599

    CAS  Google Scholar 

  5. Rhaman MM, Matin MA, Al Mamun MA et al. (2020) J Mat Sci Mat Electro 31:8727–8736

    Article  CAS  Google Scholar 

  6. Dhanalakshmi B, Kollu P, Sekhar BC, Rao BP, Rao PSVS (2017) Ceram Int 43:9272

    Article  CAS  Google Scholar 

  7. Vivekananda KV, Dhanalakshmi B, Rao BP, Rao PSVS (2021) Appl Phys A 127(3):1–9

    Article  Google Scholar 

  8. Das R, Khan GG, Varma S, Dev Mukherjee G, Mandal K (2013) J Phys Chem C 117(39):20209–20216

    Article  CAS  Google Scholar 

  9. Rana S, Karimunnesa S, Alam F, Chandra Das B, Khan FA (2022) Heliyon 8(12):e12530

    Article  CAS  Google Scholar 

  10. Dung NQ, Lam NH, Dien LX et al. (2023) Appl Phys A 129:547

    Article  CAS  Google Scholar 

  11. Dhanalakshmi B, Pratap K, Parvatheeswara Rao B, Subba Rao PSV (2016) J Alloy Compd 676:193

    Article  CAS  Google Scholar 

  12. Dhanalakshmi B, Sekhar BC, Vivekananda KV, Rao BS, Rao BP, Rao PSVS (2020) Appl Phys A 126(7):1–9

    Article  Google Scholar 

  13. Sravani GM, Murali N, Sekhar BC, Dhanalakshmi B, Parajuli D, Naidu TG (2022) J Indian Chem Soc 99(6):100465

    Article  CAS  Google Scholar 

  14. Dhanalakshmi B, Sravani GM, Suresh J, Reddy PVSSSN, Rao KE, Jyothula S, Beera CS (2023) Appl Phys A 129(6):452

    Article  CAS  Google Scholar 

  15. Sreekanth K, Dhanalakshmi B, Madhavaprasad D (2022) J Ind Chem Soc 99(9):100649

    Article  CAS  Google Scholar 

  16. Shannon RD (1976) Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  17. Ladgaonkar BP, Kolekar CB, Vaingankar AS (2002) Bull Mater Sci 25:351–354

    Article  CAS  Google Scholar 

  18. Rao GVS, Rao CNR, Ferraro JR (1970) Appl Spectrosc 24:436–445R.IR-1

    Article  CAS  Google Scholar 

  19. Som KK, Molla S, Bose K, Chaudhury BK (1992) Phys Rev B 45(4):1655–1659

    Article  CAS  Google Scholar 

  20. Pradeep A, Chandrasekaran G (2006) Mater Lett 60:371–374

    Article  CAS  Google Scholar 

  21. Dhanalakshmi B, Pratap K, ParvatheeswaraRao B, Rao PSVS (2016) J Mag Mag Mat 404:119–125

    Article  CAS  Google Scholar 

  22. Kanth MR, Dhanalakshmi, Rao PSVS, Parvatheeswara B (2022) J Mater Eng Perform 32:1–12

  23. Dhanalakshmi B, Subba Rao PSV, Rao BP, Kim C (2016) J Nanosci Nanotech 16:11089–11093

    Article  CAS  Google Scholar 

  24. Panda B, Routray KL, Behera D (2020) Phys B: Condens Matter 583:411967

    Article  CAS  Google Scholar 

  25. Routray KL, Saha S, Dhrubananda B (2020) J Electron Mater 49:7244–7258

    Article  Google Scholar 

  26. Dhanalakshmi B, Kollu P, Rao BP, Rao PSVS (2016) Ceram Int 42(2):2186–2197

    Article  CAS  Google Scholar 

  27. Routray KL, Sanyal D, Behera D (2017) J Appl Phys 122:224104

    Article  Google Scholar 

  28. Macdonald JR (1987) Chemistry 223:25–50

    CAS  Google Scholar 

  29. Pattanayak S, Choudhary RNP et al. (2014) Ceram Int 40:7983–7991

    Article  CAS  Google Scholar 

  30. Tirupathi P, Kumar N et al. (2015) J Appl Phys 117(0-8):074105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dhanalakshmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanalakshmi, B., Madhusudanacharyulu, A.S., Madhuri Sailaja, J. et al. Effect of co-doping on structural, microstructural, dielectric, impedance and magnetic properties of sol-gel synthesized Bi(1-x)TrxFe(1-y)MnyO3 (Tr = Cr, Ni, Zn, Cu) multiferroic nanoceramics. J Sol-Gel Sci Technol 109, 97–109 (2024). https://doi.org/10.1007/s10971-023-06255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06255-y

Keywords

Navigation