Skip to main content
Log in

Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, for the sake of improving the performance of homogeneous and flexible silica aerogel blankets in practical applications, lightweight recron fibers were added in silica sol for the fabrication of silica aerogel blankets. The recron based silica aerogel blanket (RSAB) was synthesized by using a low-cost industrial grade sodium silicate precursor with the superficial sol–gel process via ambient pressure drying technique. The as-synthesized RSAB features excellent flexibility, hydrophobic, thermally stable, and mechanical robustness. The Si–C–H bond percentage is maintained at 6% after heat treatment at 270 °C, which results in the high water-repelling phenomenon at a contact angle of 120°. The thermal stability of the aerogel blanket is also confirmed (246 °C) by differential scanning calorimetry. Moreover, the prepared aerogel acquires 87% porosity with homogeneous microstructure and BET surface area as 644 m2/g. The oxidation peak is detected at 280 °C of –CH3 groups. The latter endowed the RSAB exhibits superior thermal insulation property as well as excellent flexibility. These prepared RSAB aerogel composites may have great integrity for a wide diversity of energy-saving applications. Such RASB can have great potential in electrical appliances for energy conservation purposes due to its lightweight, thermally stable, mechanically robust, highly flexible, and economical manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Yes.

Code availability

Not applicable.

References

  1. H.J. Zhan, K.J. Wu, Y.L. Hu, J.W. Liu, H. Li, X. Guo et al., Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation. Chem 5, 1871–1882 (2019)

    Article  CAS  Google Scholar 

  2. T. Chen, C. Liu, P. Mu, H. Sun, Z. Zhu, W. Liang, A. Li, Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage. Chem. Eng. J. 382, 122831 (2020)

    Article  CAS  Google Scholar 

  3. Z.L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.Y. Ma, W.Y. Xing et al., Fire-retardant and thermally insulating phenolic-silica aerogels. Angew. Chem. Int. Ed. 57, 4538–4542 (2018)

    Article  CAS  Google Scholar 

  4. S. He, Y. Huang, G. Chen, M. Feng, H. Dai, B. Yuan, X. Chen, Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 362, 294–302 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. W.C. Hung, R.S. Horng, R.E. Shia, Investigation of thermal insulation performance of glass/carbon-fiber-reinforced silica aerogel composites. J. Sol-Gel. Sci. Technol. 97, 414–421 (2021)

    Article  CAS  Google Scholar 

  6. Y.F. Lin, Y.J. Lin, C.C. Lee, K.Y.A. Lin, T.W. Chung, K.L. Tung, and Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO2 capture. J. Taiwan Inst. Chem. Eng. 87, 117–122 (2018)

    Article  CAS  Google Scholar 

  7. Y. Zhang, L. Xiang, Q. Shen, X. Li, T. Wu, J. Zhang, C. Nie, Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity. J. Non-Cryst. Solids 555, 120547 (2021)

    Article  CAS  Google Scholar 

  8. H. Rocha, U. Lafont, C. Semprimoschnig, Environmental testing and characterization of fibre reinforced silica aerogel materials for mars exploration. Acta Astronaut. 165, 9–16 (2019)

    Article  CAS  Google Scholar 

  9. D.J. Boday, P.Y. Keng, B. Muriithi, J. Pyun, D.A. Loy, Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations. J. Mater. Chem. 20, 6863–6865 (2010)

    Article  CAS  Google Scholar 

  10. S. Iswar, W.J. Malfait, S. Balog, F. Winnefeld, M. Lattuada, M.M. Koebel, Effect of aging on silica aerogel properties. Microporous Mesoporous Mater. 241, 293–302 (2017)

    Article  CAS  Google Scholar 

  11. M.A. Einarsrud, E. Nilsen, A. Rigacci, G.M. Pajonk, S. Buathier, D. Valette et al., Strengthening of silica gels and aerogels by washing and aging processes. J. Non-Cryst. Solids 285, 1–7 (2001)

    Article  CAS  Google Scholar 

  12. T.Y. Wei, S.Y. Lu, Y.C. Chang, A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J. Phys. Chem. C 113, 7424–7428 (2009)

    Article  CAS  Google Scholar 

  13. L. Yan, H. Ren, J. Zhu, Y. Bi, L. Zhang, One-step eco-friendly fabrication of classically monolithic silica aerogels via water solvent system and ambient pressure drying. J. Porous Mater. 26, 785–791 (2019)

    Article  CAS  Google Scholar 

  14. S. Shafi, Y. Zhao, Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. J. Porous Mater. 27, 495–502 (2020)

    Article  CAS  Google Scholar 

  15. Y. Huang, S. He, G. Chen, H. Dai, B. Yuan, X. Chen, X. Yang, Fast preparation of glass fiber/silica aerogel blanket in ethanol & water solvent system. J. Non-Cryst. Solids 505, 286–291 (2019)

    Article  CAS  Google Scholar 

  16. M. Li, H. Jiang, D. Xu, Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying. J. Porous Mater. 25, 1417–1425 (2018)

    Article  CAS  Google Scholar 

  17. D. Du, Y. Jiang, J. Feng, L. Li, J. Feng, Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange. Vacuum 173, 109117 (2020)

    Article  CAS  Google Scholar 

  18. A. Darmawan, S.A. Rasyid, Y. Astuti, Modification of the glass surface with hydrophobic silica thin layers using tetraethylorthosilicate (TEOS) and trimethylchlorosilane (TMCS) precursors. Surf. Interface Anal. 53, 305–313 (2020)

    Article  CAS  Google Scholar 

  19. C. Li, X. Cheng, Z. Li, Y. Pan, Y. Huang, L. Gong, Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J. Non-Cryst. Solids 457, 52–59 (2017)

    Article  CAS  Google Scholar 

  20. M. Ramamoorthy, A.A. Pisal, R.S. Rengasamy, A.V. Rao, In-situ synthesis of silica aerogel in polyethylene terephthalate fibre nonwovens and their composite properties on acoustical absorption behavior. J. Porous Mater. 25, 179–187 (2018)

    Article  CAS  Google Scholar 

  21. P. Liu, H. Gao, X. Chen, D. Chen, J. Lv, M. Han, G. Wang, In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos. B: Eng. 195, 1072 (2020)

    Article  CAS  Google Scholar 

  22. H. Cheng, Z. Fan, C. Hong, X. Zhang, Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection. Compos. A: Appl. Sci. Manuf. 143, 1313 (2021)

    Article  CAS  Google Scholar 

  23. M.R. Bhuiyan, L. Wang, A. Shaid, I. Jahan, R.A. Shanks, Silica aerogel-integrated nonwoven protective fabrics for chemical and thermal protection and thermophysiological wear comfort. J. Mater. Sci. 55, 2405–2418 (2020)

    Article  CAS  Google Scholar 

  24. Dong Zhang, Advances in filament yarn spinning of textiles and polymers (WpWoodhead Publishing, Sawston, 2014)

    Google Scholar 

  25. Z.A.A. Halim, M.A.M. Yajid, H. Hamdan, Effects of solvent exchange period and heat treatment on physical and chemical properties of rice husk derived silica aerogels. Silicon 13, 251–257 (2021)

    Article  CAS  Google Scholar 

  26. S. Yue, X. Li, H. Yu, Z. Tong, Z. Liu, Preparation of high-strength silica aerogels by two-step surface modification via ambient pressure drying. J. Porous Mater. 28, 651–659 (2021)

    Article  CAS  Google Scholar 

  27. C. Zhao, Y. Li, W. Ye, X. Shen, X. Yuan, C. Ma, Y. Cao, Performance regulation of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient pressure drying route. J. Non-Cryst. Solids 567, 120923 (2021)

    Article  CAS  Google Scholar 

  28. P.B. Sarawade, J.K. Kim, H.K. Kim, H.T. Kim, High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254, 574–579 (2007)

    Article  CAS  Google Scholar 

  29. S. Shafi, R. Navik, X. Ding, Y. Zhao, Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J. Non-Cryst. Solids 503, 78–83 (2019)

    Article  CAS  Google Scholar 

  30. M. Cai, S. Shafi, Y. Zhao, Preparation of compressible silica aerogel reinforced by bacterial cellulose using tetraethylorthosilicate and methyltrimethoxylsilane co-precursor. J. Non-Cryst. Solids 481, 622–626 (2018)

    Article  CAS  Google Scholar 

  31. P.B. Sarawade, J.K. Kim, A. Hilonga, D.V. Quang, H.T. Kim, Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microporous Mesoporous Mater. 139, 138–147 (2011)

    Article  CAS  Google Scholar 

  32. L. López-Pérez, V. Zarubina, I. Melián-Cabrera, The Brunauer–Emmett–Teller model on alumino-silicate mesoporous materials. How far is it from the true surface area. Microporous Mesoporous Mater. 319, 1065 (2021)

    Article  CAS  Google Scholar 

  33. S. Cui, S. Yu, B. Lin, X. Shen, X. Zhang, D. Gu, Preparation of amine-modified SiO2 aerogel from rice husk ash for CO 2 adsorption. J. Porous Mater. 24, 455–461 (2017)

    Article  CAS  Google Scholar 

  34. N. Marinkov, M. Markova-Velichkova, S. Gyurov, Y. Kostova, I. Spassova, D. Rabadjieva, G. Gentscheva, Preparation and characterization of silica gel from silicate solution obtained by autoclave treatment of copper slag. J. Sol-Gel. Sci. Technol. 87, 331–339 (2018)

    Article  CAS  Google Scholar 

  35. P.B. Sarawade, J.K. Kim, A. Hilonga, H.T. Kim, Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12, 911–918 (2010)

    Article  CAS  Google Scholar 

  36. W.J. Schmitt, The preparation and properties of acid-catalyzed silica aerogel (The University of Wisconsin-Madison, Madison, 1982)

    Google Scholar 

  37. J. Chen, B. Zhang, M.Q. Wei, J. Men, G.W. Miao, The optimum of preparation and characterization of aerogels like hydrophobic titania by ambient pressure drying. Adv. Mater. Res. 1120, 264–274 (2015)

    Article  Google Scholar 

  38. H. Krishna, M.O. Haus, R. Palkovits, Basic silica catalysts for the efficient dehydration of biomass-derived compounds–elucidating structure-activity relationships for Na2O/SiO2-type materials. Appl. Catal. B: Environ. 286, 119933 (2021)

    Article  CAS  Google Scholar 

  39. L.J. Wang, S.Y. Zhao, M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113, 485–490 (2009)

    Article  CAS  Google Scholar 

  40. M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. R. 63, 1–30 (2008)

    Google Scholar 

  41. S.D. Doke, C.M. Patel, V.N. Lad, Improving physical properties of silica aerogel using compatible additives. Chem. Pap. 75, 215–225 (2021)

    Article  CAS  Google Scholar 

  42. Á. Lakatos, Stability investigations of the thermal insulating performance of aerogel blanket. Energy Build. 185, 103–111 (2019)

    Article  Google Scholar 

  43. T. Zhou, X. Cheng, Y. Pan, C. Li, L. Gong, H. Zhang, Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 437, 321–328 (2018)

    Article  CAS  Google Scholar 

  44. Y.K. Lee, V.G. Parale, H.H. Cho, D.B. Mahadik, H.H. Park, Hydrophobic silica composite aerogels using poly (methyl methacrylate) by rapid supercritical extraction process. J. Sol-Gel. Sci. Technol. 83, 692–697 (2017)

    Article  CAS  Google Scholar 

  45. C.P. Camirand, Measurement of thermal conductivity by differential scanning calorimetry. Thermochim. Acta 417(1), 1–4 (2004)

    Article  CAS  Google Scholar 

  46. S. Knhasamy, A. Store, G.M. Haarberg, S. Kjelstrup, A. Solheim, Thermal conductivity of molten carbonates with dispersed solid oxide from differential scanning calorimetry. Materials 12(9), 1486 (2019)

    Article  CAS  Google Scholar 

  47. Z. Li, X. Cheng, L. Gong, Q. Liu, S. Li, Enhanced flame retardancy of hydrophobic silica aerogels by using sodium silicate as precursor and phosphoric acid as catalyst. J. Non-Cryst. Solids 481, 267–275 (2018)

    Article  CAS  Google Scholar 

  48. X.B. Hou, R.B. Zhang, D.N. Fang, Novel whisker-reinforced Al2O3- SiO2 aerogel composites with ultra-low thermal conductivity. Ceram. Int. 43, 9547–51 (2017)

    Article  CAS  Google Scholar 

  49. Z. Li, X. Cheng, S. He, X. Shi, L. Gong, H. Zhang, Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. A Appl. Sci. Manuf. 84, 316–325 (2016)

    Article  CAS  Google Scholar 

  50. Z. Lu, D. Ning, W. Dang, D. Wang, F. Jia, J. Li, E. Songfeng, Comparative study on the mechanical and dielectric properties of aramid fibrid, mica and nanofibrillated cellulose based binary composites. Cellulose 27, 8027–8037 (2020)

    Article  CAS  Google Scholar 

  51. R. Zhang, Z. An, Y. Zhao, L. Zhang, P. Zhou, Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity. Int. J. Appl. Ceram. Technol. 17, 1531–1539 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Mumbai under a minor research project, Department of Physics and University of Jeddah, Deanship of Scientific Research (DSR) under the research project grant (UJ-02-020-ICGR), and DST-SERB project grant (EEQ/2020/0002980) for their technical and financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Pradip B. Sarawade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.B., Makki, A., Hajjar, D. et al. Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection. J Porous Mater 29, 957–969 (2022). https://doi.org/10.1007/s10934-022-01231-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01231-3

Keywords

Navigation