Skip to main content
Log in

Highly thermally stable alumina-based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly thermally stable alumina-based aerogels are synthesized by the acetone–aniline in situ water formation method and modified by partially hydrolyzed aluminum tri-sec-butoxide at different temperatures (25, 45, and 60 °C). The effects of modification, especially modification temperature, on microstructure and thermal stability of alumina-based aerogels are investigated. After the modification, the morphologies of alumina-based aerogels change from the network structures with interconnected needle-like particles to those with stacked sheet-like particles, resulting in a better heat resistance. The thermal stability of alumina-based aerogels enhances with the increasing modification temperature, whereas the high temperature (more than 60 °C) would lead to the dissolution of wet gels during the modification process due to the high solubility. After annealing at 1200 °C for 2 h, the 45 °C-modified alumina-based aerogel exhibits the best thermal stability with the lowest linear shrinkage of ~7% and the highest specific surface area of 154 m2/g. In addition, the modified aerogels remain in the θ-Al2O3 phase while the unmodified one transforms into α-Al2O3 phase after 1300 °C annealing. The alumina-based aerogels are further reinforced by incorporating with mullite fiber felt and TiO2. The obtained composites show ultralow thermal conductivities of 0.065, 0.086, and 0.118 W/mK at 800, 1000, and 1200 °C, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASB:

aluminum tri-sec-butoxide

TMEO:

trimethylethoxysilane

EtOH:

ethanol

References

  1. Yoldas BE (1975) Am Ceram Soc Bull 54(3):289–290

    Google Scholar 

  2. Yoldas BE (1975) Am Ceram Soc Bull 54(3):286–288

    Google Scholar 

  3. Hirashima H, Kojima C, Imai H (1997) J Solgel Sci Technol 8(1-3):843–846

    Article  Google Scholar 

  4. Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Appl Catal A Gen 197(2):191–200

    Article  Google Scholar 

  5. Suh DJ, Park T-J, Lee S-H, Kim K-L (2001) J Non Cryst Solids 285(1):309–316

    Article  Google Scholar 

  6. Pierre AC, Pajonk GM (2002) Chem Rev 102(11):4243–4266

    Article  Google Scholar 

  7. Al-Yassir N, Le Van Mao R (2007) Appl Catal A Gen 317(2):275–283

    Article  Google Scholar 

  8. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

  9. Bang Y, Han SJ, Yoo J, Park S, Choi JH, Lee YJ, Song JH, Song IK (2014) Int J Hydrogen Energy 39(10):4909–4916

    Article  Google Scholar 

  10. Wang W, Zhang Z, Zu G, Shen J, Zou L, Lian Y, Liu B, Zhang F (2014) RSC Adv 4(97):54864–54871

    Article  Google Scholar 

  11. Horiuchi T, Osaki T, Sugiyama T, Suzuki K, Mori T (2001) J Non Cryst Solids 291(3):187–198

    Article  Google Scholar 

  12. Horiuchi T, Chen L, Osaki T, Sugiyama T, Suzuki K, Mori T (1999) Catal Lett 58(2-3):89–92

    Article  Google Scholar 

  13. Miller JB, Ko EI (1998) Catal Today 43(1):51–67

    Article  Google Scholar 

  14. Poco JF, Satcher JH, Hrubesh LW (2001) J Non Cryst Solids 285(1):57–63

    Article  Google Scholar 

  15. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Chem Mater 17(2):395–401

    Article  Google Scholar 

  16. Osaki T, Nagashima K, Watari K, Tajiri K (2007) J Non Cryst Solids 353(24):2436–2442

    Article  Google Scholar 

  17. Osaki T, Mori T (2009) J Non Cryst Solids 355(31):1590–1596

    Article  Google Scholar 

  18. Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) J Solgel Sci Technol 61(1):268–274

    Article  Google Scholar 

  19. Aravind PR, Mukundan P, Pillai PK, Warrier K (2006) Microporous Mesoporous Mater 96(1):14–20

    Article  Google Scholar 

  20. Padmaja P, Warrier K, Padmanabhan M, Wunderlich W, Berry FJ, Mortimer M, Creamer NJ (2006) Mater Chem Phys 95(1):56–61

    Article  Google Scholar 

  21. Mardkhe MK, Huang B, Bartholomew CH, Alam TM, Woodfield BF (2016) J Porous Mater 23(2):475–487

    Article  Google Scholar 

  22. Wu X, Shao G, Cui S, Wang L, Shen X (2016) Ceram Int 42(1):874–882

    Article  Google Scholar 

  23. Mizushima Y, Hori M (1993) J Mater Res 8(11):2993–2999

    Article  Google Scholar 

  24. Yang J, Wang Q, Wang T, Liang Y (2016) RSC Adv 6(31):26271–26279

    Article  Google Scholar 

  25. Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z, Liu B, Zhang F (2014) Chem Mater 26(19):5761–5772

    Article  Google Scholar 

  26. Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Chem Mater 25(23):4757–4764

    Article  Google Scholar 

  27. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, New York, NY

    Google Scholar 

  28. Leventis N (2007) Acc Chem Res 40(9):874–884

    Article  Google Scholar 

  29. Zu G, Shen J, Wei X, Ni X, Zhang Z, Wang J, Liu G (2011) J Non Cryst Solids 357(15):2903–2906

    Article  Google Scholar 

  30. Sing KS (1985) Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  31. Boumaza A, Favaro L, Lédion J, Sattonnay G, Brubach J, Berthet P, Huntz A, Roy P, Tétot R (2009) J Solid State Chem 182(5):1171–1176

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Projects of Zhejiang Province (2014C01030), “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (Grant No. 14CG19) and National Key Technology Research and Development Program of China (2013BAJ01B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wang or Jun Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, W., Wang, X., Wu, Y. et al. Highly thermally stable alumina-based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide. J Sol-Gel Sci Technol 84, 507–514 (2017). https://doi.org/10.1007/s10971-017-4380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4380-5

Keywords

Navigation