Skip to main content
Log in

Structural, vibrational and magnetic properties of sol-gel derived BiFe1-xCoxO3 samples

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

BiFe1-xCoxO3 samples (with x = 0.0, 0.01, 0.02, and 0.05; named as BFO, BFCO-1, BFCO-2, and BFCO-5) were prepared using the sol-gel process. The impact of Co3+ substitution on the structural, vibrational, and magnetic characteristics of BiFeO3 was studied. The pure phase polycrystalline nature of prepared samples associated to distorted rhombohedral structure of BiFeO3 was confirmed by the x-ray diffraction studies. A thorough structural analysis was done using Rietveld refinement by considering R3c crystal symmetry to evaluate lattice parameters, crystallite size, bond angles (Fe–O–Fe), bond distances, and crystal unit cell. The FTIR spectra were analyzed in the wave number range 400–650 cm−1 to identify metal-oxygen bonds and to estimate effective mass and bond length. Raman spectra examined in the wavenumber range 50–1500 cm−1 exhibited 13 (4A1 + 9E) Raman active transverse and longitudinal phonon modes along with second overtones. The Fe3+ and Fe2+ states were confirmed by x-ray photoelectron spectroscopy and the concentration of the Fe2+ state increased from 26.5% for BFO to 38.6% for BFCO-2 with the substitution of Co3+ in BFO. The magnetic measurments showed weak ferromagntic behaviour which further enhanced on increasing Co3+ concentration. The maximum magentization (MH) value increased from 0.24 emu/g to 1.02 emu/g and remnant magnetiation (Mr) values increased from 0.001 emu/g to 0.407 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thansanga L, Shukla A, Kumar N, Choudhary RNP (2020) Study of effect of Dy substitution on structural, dielectric, impedance, and magnetic properties of bismuth ferrite. J Mater Sci: Mater Electron 31(13):10006–10017

    CAS  Google Scholar 

  2. Chauhan S, Kumar M, Pandey H, Chhoker S, Katyal SC (2019) Ca–Li substitution driven structural, dynamics of electron density, magnetic and optical properties of BiFeO3 nanoparticles. J Alloy Compd 811:151965–152001

    Article  CAS  Google Scholar 

  3. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda L (2014) Thermal stability of multiferroic BiFeO3: kinetic nature of the β–γ transition and peritectic decomposition. J Phys Chem C 118(45):26387–26395

    Article  Google Scholar 

  4. Razad PM, Saravanakumar K, Reddy VR, Choudhary RJ, Jeyadheepan K, Mahalakshmi K (2021) Tailoring the size and magnetization of titanium-doped BiFeO3 nanorods. J Electron Mater 50:1075–1082

    Article  CAS  Google Scholar 

  5. Fukumura H, Harima H, Kisoda K, Tamada M, Noguchi Y, Miyayama M (2007) Raman scattering study multiferroic BiFeO3 single Cryst, 310(2):e367–e369

    CAS  Google Scholar 

  6. Deng X, Zeng Z, Gao R, Wang Z, Chen G, Cai W, Fu C (2020) Study of structural, optical, and enhanced multiferroic properties of Ni doped BFO thin films synthesized by sol-gel method. J Alloy Compd 831:154857–154893

    Article  CAS  Google Scholar 

  7. Mandal P, Sundaresan A (2021) Effect of nonmagnetic ion substitution on multiferroic properties of BiFeO3. J Electron Mater 50:1772–1778

    Article  CAS  Google Scholar 

  8. Li J-B, Rao GH, Xiao Y, Liang JK, Luo J, Liu GY, Chen JR (2010) Structural evolution, and physical properties of Bi1−xGdxFeO3 ceramics. Acta Materialia 58:3701–3708

    Article  CAS  Google Scholar 

  9. Alikhanov NM-R, Rabadanov MK, Orudzhev FF, Gadzhimagomedov SK, Emirov RM, Sadykov SA, Sobola D (2021) Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J Mater Sci: Mater Electron 32:13323–13335

    CAS  Google Scholar 

  10. Thang DV, Nguyen VQ, Hung NM, Oanh LTM, Khang NC, Tu BD, Thao DTX, Van Minh N (2020) Structural, optical, ferroelectric and ferromagnetic properties of Bi1-xGdxFeO3 materials. J Electron Mater 49:4443–4449

    Article  CAS  Google Scholar 

  11. Pattanayak S, Choudhary RNP, Das PR (2014) Effect of praseodymium on electrical properties of BiFeO3 multiferroic. J Electron Mater 43:470–478

    Article  CAS  Google Scholar 

  12. Prasannakumara R, Rai DP, Gopalakrishna Naik K (2021) Study of optical and magnetic properties of Mn substituted bismuth ferrite thin films. J Mater Sci: Mater Electron 32:28542–28552

    CAS  Google Scholar 

  13. Sahni M, Mukhopadhyay S, Mehra RM, Chauhan S, Chandra Sati P, Kumar M, Kumar N (2021) Effect of Yb/Co co-dopants on surface chemical bonding states of BiFeO3 nanoparticles with promising photocatalytic performance in dye degradation. J Phys Chem Solids 152:109926–109937

    Article  CAS  Google Scholar 

  14. Sharma AD, Sharma HB (2021) Influence of Gd doping and thickness variation on structural, morphological, and optical properties of nanocrystalline bismuth ferrite thin films via sol–gel technology. J Mater Sci: Mater Electron 32(15):20612–20624

    CAS  Google Scholar 

  15. Chauhan S, Kumar M, Chhoker S, Katyal SC, Singh M (2016) Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv 6(49):43080–43090

    Article  CAS  Google Scholar 

  16. Irandoust R, Gholizadeh A (2020) A comparative study of the effect of the non-magnetic and magnetic trivalent rare-earth ion substitutions on bismuth ferrite properties: correlation between the crystal structure and physical properties. Solid State Sci 101:106142–106152

    Article  CAS  Google Scholar 

  17. Singh HH, Sharma HB (2022) Study on electrical transport and relaxation process of ceramic-based nanocomposites of (1−x) BiFeO3-xCoFe2O4 (x = 0.0, 0.2, 0.5, 0.8, 1.0). J Sol-Gel Sci Technol 102:665–678

    Article  CAS  Google Scholar 

  18. You S, Zhang B (2020) Enhanced magnetic properties of cobalt-doped bismuth ferrite nanofibers. Mater Res Express 7(4):046102–046109

    Article  CAS  Google Scholar 

  19. Li Z-J, Hou Z-L, Song W-L, Liu X-D, Wang D-W, Tang J, Shao X-H (2016) Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater Lett 175:207–211

    Article  CAS  Google Scholar 

  20. Ameer S, Jindal K, Sharma S, Jha PK, Tomar M, Gupta V (2018) Structural, morphological, and optical properties of BiFe0.99Cr0.01O3 thin films. Vacuum 158:166–171

    Article  CAS  Google Scholar 

  21. Ederer C, Spaldin NA (2005) Phys Rev B 71(6):060401–060405

    Article  Google Scholar 

  22. Rhaman MM, Matin MA, Al Mamun MA, Hussain A, Hossain MN, Das BC, Hakim MA, Islam MF (2020) Enhanced electrical conductivity and multiferroic property of cobalt-doped bismuth ferrite nanoparticles. J Mater Sci: Mater Electron 745:401–408

    Google Scholar 

  23. Rhaman MM, Matin MA, Hakim MA, Islam MF (2021) Bandgap tuning of samarium and cobalt co-doped bismuth ferrite nanoparticles. Mater Sci Eng B 263:114842–114853

    Article  CAS  Google Scholar 

  24. Liu KT, Li J, Xu JB, Xu FL, Wang L, Bian L (2017) Study on dielectric, optic and magnetic properties of manganese and nickel co-doped bismuth ferrite thin film. J Mater Sci: Mater Electron 28:5609–5614

    CAS  Google Scholar 

  25. Jose PJ, Rathod U, Savaliya C et al. (2022) Studies on multiferroic behavior of Y-Mn Co-Doped Bi0.9La0.1FeO3. J Electron Mater 51(12):6689–6698

    Article  CAS  Google Scholar 

  26. Kumar L, Kumar P, Kar M (2013) Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J Alloy Compd 551:72–81

    Article  CAS  Google Scholar 

  27. Chaturvedi S, Shyam P, Apte A, Kumar J, Bhattacharyya A, Awasthi AM, Kulkarni S (2016) nanoparticles at the spin-reorientation temperature: role of exchange striction. Phys Rev B 93(17):174117–174129.

    Article  Google Scholar 

  28. Chandra Sati P, Arora M, Chauhan S, Kumar M, Chhoker S (2014) Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 cermaics. J Phys Chem Solid 75(1):105–108

    Article  CAS  Google Scholar 

  29. Kumar A, Yadav KL (2011) A systematic study on magnetic, dielectric and magnetocapacitance properties of Ni doped bismuth ferrite. J Phys Chem Solids 72(11):1189–1194

    Article  CAS  Google Scholar 

  30. Dhanya SR, Nair SG, Satapathy J, Kumar NP (2019) Structural and spectroscopic characterization of bismuth-ferrites. AIP Conf Proc 2166(1):020017–020025

    Article  CAS  Google Scholar 

  31. Chandra Sati P, Kumar M, Chhoker S (2015) Low temperature ferromagnetic ordering and dielectric properties of Bi1-xDyxFeO3 ceramics. Ceram Int 41(2):3227–3236

    Article  CAS  Google Scholar 

  32. Sati PC, Arora M, Chauhan S, Kumar M, Chhoker S (2014) Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram Int 40(6):7805–7816

    Article  CAS  Google Scholar 

  33. Sati PC, Arora M, Chauhan S, Kumar M, Chhoker S (2013) Rietveld analysis, magnetic, vibrational and impedance properties of (Bi1−xPrx) (Fe1−xZrx) O3 ceramics. J Mater Sci: Mater Electron 24:5023–503

    CAS  Google Scholar 

  34. Song X, Ma Y, Ge X, Zhou H, Wang G, Zhang H, Zhang Y (2017) Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing. RSC Adv 7(14):8661–8669

    Article  CAS  Google Scholar 

  35. Khelifi H, Zouari I, Habouti S, Abdelmoula N, Mezzane D, Khemakhem H, Es-Souni M (2015) Raman spectroscopy and evidence of magnetic transition in 0.9BiFeO3–0.1Ba0.8Sr0.2TiO3 ceramic. J Alloy Compd 638:50–54

    Article  CAS  Google Scholar 

  36. Muneeswaran M, Jegatheesan P, Gopiraman M, Kim I-S, Giridharan NV (2013) Structural, optical, and multiferroic properties of single phased BiFeO3. Appl Phys A 114:853–859

    Article  Google Scholar 

  37. Singh MK, Ryu S, Jang HM (2005) Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys Rev B 72(13):132101–132105

    Article  Google Scholar 

  38. Mishra RK, Pradhan DK, Choudhary RNP, Banerjee A (2008) Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J Phys: Condens Matter 20(4):045218–045224

    Google Scholar 

  39. Bhadala F, Suthar L, Roy M (2021) Sequel of divalent zinc substitution on structural, electrical, and thermal properties of bismuth ferrite ceramics. Appl Phys A 127(5):320–337

    Article  CAS  Google Scholar 

  40. Chauhan S, Kumar M, Chhoker S, Katyal SC (2016) A comparative study on structural, vibrational, dielectric, and magnetic properties of microcrystalline BiFeO3, nanocrystalline BiFeO3 and core-shell structured BiFeO3@SiO2 nanoparticles. J Alloy Compd 666:454–467

    Article  CAS  Google Scholar 

  41. Chauhan S, Kumar M, Chhoker S, Katyal SC, Jewariya M, Suma BN, Kunte G (2015) Structural modification and enhanced magnetic properties with two phonon modes in Ca–Co codoped BiFeO3 nanoparticles. Ceram Int 41(10):14306–14314

    Article  CAS  Google Scholar 

  42. Park T-J, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772

    Article  CAS  Google Scholar 

  43. Aquino R, Depeyrot J, Sousa MH, Tourinho FA, Dubois E, Perzynski R (2005) Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys Rev B 72(18):184435–184445

    Article  Google Scholar 

  44. Jaiswal A, Das R, Vivekanand K, Mary Abraham P, Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114(5):2108–2115

    Article  CAS  Google Scholar 

  45. Cullity BD, Graham CD (2009) Introduction to Magnetic Materials. John Wiley& Sons, Inc., Hoboken

    Google Scholar 

  46. Chakrabarti K, Das K, Sarkar B, Ghosh S, De SK, Sinha G, Lahtinen J (2012) Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl Phys Lett 101(4):042401–042406

    Article  Google Scholar 

Download references

Acknowledgements

The resources offered by JIIT Noida for performing this study effort are warmly acknowledged by the authors. One of the authors Sheetal Sharma is also grateful to Jaypee Institute of information Technology Noida for granting an assistantship.

Author information

Authors and Affiliations

Authors

Contributions

SS performed experimental work, analysed the results and wrote the manuscript. MK conceptualized the idea, supervised the work and edited the manuscript.

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, M. Structural, vibrational and magnetic properties of sol-gel derived BiFe1-xCoxO3 samples. J Sol-Gel Sci Technol 108, 435–447 (2023). https://doi.org/10.1007/s10971-023-06204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06204-9

Keywords

Navigation