Skip to main content

Advertisement

Log in

Optimization of energy-storage performance of Mn-doped BaZr0.2Ti0.8O3 lead-free ferroelectric thin films by the sol–gel method

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dielectric capacitors have been widely studied for energy storage applications in pulsed power electronic and electrical systems due to their fast charge/discharge rate and high power density. In this work, the lead-free ferroelectric BaZr0.2Ti0.8O3–0.02 MnO2 (BZT-0.02 Mn) thin films are prepared by a sol–gel method on Pt(111)/Ti/SiO2/Si(100) substrates. The crystal structure, surface morphology, ferroelectric properties, leakage behavior, energy storage properties and stability of the films are systematically investigated. The BZT-0.02 Mn thin films exhibit relatively high recoverable energy storage density of 32.3 J/cm3 and energy storage efficiency of 62% at 3700 kV/cm. In addition, the frequency-insensitive stability from 0.1 kHz to 10 kHz, long-term fatigue resistance up to 107 switching cycles and high temperature stability in a range of 20 °C to 120 °C are also achieved. The results show that the BZT-0.02 Mn thin film is a promising lead-free dielectrics for application in energy storage.

Graphical Abstract

Schematic diagram and energy storage characteristics of BaZr0.2Ti0.8O3–0.02 MnO2 thin film capacitor.

Highlights

  • Ba0.2Zr0.8TiO3 thin films doped with 2 mol% MnO2 are prepared on Pt(111)/Ti/SiO2/Si(100) substrates by the sol–gel method.

  • An improved high energy storage density of 32.3 J/cm3 and an optimized high energy storage efficiency of 62% are achieved in the Ba0.2Zr0.8TiO3–MnO2 thin film.

  • Excellent frequency stability, temperature stability and fatigue resistance are also obtained in the Ba0.2Zr0.8TiO3–MnO2 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan H, Li F, Liu Y et al. (2019) Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365:578–582

    Article  CAS  Google Scholar 

  2. Yang L, Kong X, Li F et al. (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  CAS  Google Scholar 

  3. Pan H, Ma J, Ma J et al. (2018) Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 9:1813

    Article  Google Scholar 

  4. Wang G, Lu Z, Li Y et al. (2021) Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 121(10):6124–6172

    Article  CAS  Google Scholar 

  5. Tang Z, Ge J, Ni H et al. (2018) High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. J Alloy Compd 757:169–176

    Article  CAS  Google Scholar 

  6. Yan H, Song B, Zhu K et al. (2021) Achieved high energy density and excellent thermal stability in (1−x)(Bi0.5Na0.5)0.94Ba0.06TiO3xBi(Mg0.5Ti0.5)O3 relaxor ferroelectric thin films. J Mater Sci: Mater Electron 32:16269–16278

    CAS  Google Scholar 

  7. Song B, Wu S, Yan H et al. (2021) Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer. J Mater Sci Technol 77:178–186

    Article  CAS  Google Scholar 

  8. Li X, Cheng Y, Wang F et al. (2022) Enhancement of energy storage and hardness of (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics via introducing Ba(Mg1/3Nb2/3)O3. Chem Eng J 431:133441

    Article  CAS  Google Scholar 

  9. Palneedi H, Peddigari M, Hwang G et al. (2018) High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 28(42):1803665

    Article  Google Scholar 

  10. Chen L, Deng SQ, Liu H, Wu J, Qi H, Chen J (2022) Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 13:3089–3089

    Article  CAS  Google Scholar 

  11. Ji HF, Wang DW, Bao WC, Lu ZL, Wang GE, Yang HJ, Mostaed ALI, Li L, Feteira Antonio SSK, Xu FF, Li DJ, Ma CJ, Liu SY, Reaney IM (2021) Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater 38:113–120

    Article  Google Scholar 

  12. Wang M, Qin F, Luo CY et al. (2021) Ultrahigh energy storage density and efficiency in Bi0.5Na0.5TiO3-based ceramics via the domain and bandgap engineering. ACS Appl Mater Interfaces 13(43):51218–51229

    Article  CAS  Google Scholar 

  13. Wang Y, Gao S, Wang T et al. (2020) Structure, dielectric properties of novel Ba(Zr,Ti)O3 based ceramics for energy storage application. Ceram Int 46(8):12080–12087

    Article  CAS  Google Scholar 

  14. Wang K, Zhang Y, Wang S et al. (2021) High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400°C. ACS Appl Mater Interfaces 13(19):22717–22727

    Article  CAS  Google Scholar 

  15. Sun Z, Ma C, Wang X et al. (2017) Large energy density, excellent thermal stability, and high cycling endurance of lead-free BaZr0.2Ti0.8O3 film capacitors. ACS Appl Mater Interfaces 9(20):17096–17101

    Article  CAS  Google Scholar 

  16. Luo J, Zhu H, Zheng T et al. (2022) A slush-like polar structure for high energy storage performance in a Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectric thin film. J Mater Chem A 10(13):7357–7365

    Article  CAS  Google Scholar 

  17. Wang J, Qiu GX, Qian H et al. (2022) Optimized energy-storage performance in Mn-doped Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 lead-free dielectric thin films. Appl Surf Sci 571:151274

    Article  CAS  Google Scholar 

  18. Liang Z, Liu M, Ma C et al. (2018) High-performance BaZr0.35Ti0.65O3 thin film capacitors with ultrahigh energy storage density and excellent thermal stability. J Mater Chem A 6(26):12291–12297

    Article  CAS  Google Scholar 

  19. Cheng WX, Ding AL, He XY et al. (2006) Characterization of Ba(Zr0.05 Ti0.95)O3 thin film prepared by sol-gel process. J Electroceram 16(4):523–526

    Article  CAS  Google Scholar 

  20. Deng X, Huang J, Cai W et al. (2012) Effect of annealing temperature on properties of barium zirconium titanate thin films deposited by sol-gel method. Integr Ferroelectr 140(1):42–48

    Article  CAS  Google Scholar 

  21. Sharma H, Kotnala RK, Shah J et al. (2019) Surface, phase transition and impedance studies of Zr- mutated BaTiO3 lead-free thin films. Results Phys 13:102190

    Article  Google Scholar 

  22. Teranishi T, Kajiyama S, Hayashi H et al. (2017) Polarization behavior of sol-gel-derived relaxor Ba(Zr, Ti)O3 films. J Am Ceram Soc 100(4):1542–1550

    Article  CAS  Google Scholar 

  23. Peng J, Shan D, Liu Y et al. (2018) A thermodynamic potential for barium zirconate titanate solid solutions. Npj Comput Mater 4(1):1–9

    Article  Google Scholar 

  24. Leonidov II, Tsidilkovski VI, Tropin ES, Vlasov MI, Putilov LP (2018) Acceptor doping, hydration and band-gap engineering of BaZrO3. Mater Lett 212:336–338

    Article  CAS  Google Scholar 

  25. Yang F, Yang L, Ai CZ, Xie PC, Lin SW, Wang CZ, Lu XH (2018) Tailoring bandgap of perovskite BaTiO3 by transition metals co-doping for visible-light photo electrical applications: a first-principles study. Nanomaterials 8(7):455

    Article  Google Scholar 

  26. Sun Z, Tian X, Shang L et al. (2021) Modifying energy storage performances of new lead-free system ferroelectric capacitors through interfacial stress. Appl Surf Sci 559:149992

    Article  CAS  Google Scholar 

  27. Zhao X, Li C, Liu J et al. (2021) (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with simultaneous high energy storage properties and remarkable charge-discharge performances under low working electric fields for dielectric capacitor applications. Ceram Int 47(18):25800–25809

  28. Yu T, Kwok KW, Chan HLW (2007) Preparation and properties of sol–gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film. Thin Solid Films 515(7-8):3563–3566

    Article  CAS  Google Scholar 

  29. Liu S, Zou D, Yu X et al. (2020) Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol–gel process on 2D mica. ACS Appl Mater Interfaces 12(49):54991–54999

    Article  CAS  Google Scholar 

  30. Cheng H, Ouyang J, Zhang Y et al. (2017) Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 8(1):1999

    Article  Google Scholar 

  31. Nguyen MD (2021) Ultrahigh energy-storage performance in lead-free BZT thin-films by tuning relaxor behavior. Mater Res Bull 133:111072

    Article  CAS  Google Scholar 

  32. Sangwan KM, Ahlawat N, Kundu RS et al. (2018) Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications. J Phys Chem Solids 117:158–166

    Article  CAS  Google Scholar 

  33. Madhan K, Thiyagarajan R, Jagadeeshwaran C, Paul Blessington Selvadurai A, Pazhanivelu V, Aravinth K, Yang WG, Murugaraj R (2018) Investigations on the phase transition of Mn-doped BaTiO3 multifunctional ferroelectric ceramics through Raman, dielectric, and magnetic studies. J Sol-Gel Sci Technol 88(3):584–592

    Article  CAS  Google Scholar 

  34. Madhan K, Murugaraj R (2020) Structural, electrical, and weak ferromagnetic-to-antiferromagnetic nature of Ni and La co-doped BaTiO3 by sol–gel combustion route. J Sol-Gel Sci Technol 95(1):11–21

    Article  CAS  Google Scholar 

  35. Zhang GD, Dai JQ, Liang XL (2023) Enhanced ferroelectric properties in La-doped BiFeO3 films by the sol-gel method. J Sol-Gel Sci Technol 105(2):489–499

    Article  CAS  Google Scholar 

  36. Mesrar M, Lamcharfi T, Echatoui NS, Abdi F (2022) Effect of sintering temperature on the microstructure and electrical properties of (Na0.5Bi0.5)TiO3 processed by the sol-gel method. J Sol-Gel Sci Technol 103(3):820–831

    Article  CAS  Google Scholar 

  37. Liu J, Ding Y, Li C et al. (2021) Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramicwith remarkable comprehensive energy storage performance under low electric field for capacitor applications. J Mater Sci: Mater Electron 32(16):21164–21177

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and National Natural Science Foundation of China (NSFC) under grant No. 51902155.

Author contributions

Yutao Luo: Formal analysis, investigation, writing – original draft. Guoxiu Qiu: Investigation, formal analysis, validation, writing – original draft. Jun Wang: Conceptualization, writing –review & editing. Yunfei Liu: Project administration, conceptualization, supervision, funding acquisition. Jin Luo: Conceptualization, writing –review & editing, funding acquisition, supervision. Yinong Lyu: Conceptualization, supervision, project administration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Liu, Jin Luo or Yinong Lyu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Qiu, G., Wang, J. et al. Optimization of energy-storage performance of Mn-doped BaZr0.2Ti0.8O3 lead-free ferroelectric thin films by the sol–gel method. J Sol-Gel Sci Technol 107, 560–568 (2023). https://doi.org/10.1007/s10971-023-06150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06150-6

Keywords

Navigation