Skip to main content
Log in

Polypyrrole-doped cellulose hydrogel evaporator for steam generation and wastewater cleaning

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Solar-driven steam generation is considered an energy-saving and environmentally friendly thermal distillation method to solve freshwater shortage through desalination and wastewater treatment. Herein, PPy-doped cellulose composite hydrogels (PCGs) are prepared for clean water production. By varying the matrix solid content, the pore structure and water transport ability of the hydrogel material can be tailored, and the water evaporation enthalpy can be reduced by creating weak hydrogen bonds. By balancing hydrophobic sites in the hydrogel, porosity induced water transport and reduced evaporation enthalpy, a water evaporation rate of 1.88 kg m−2 h−1 under one sun is obtained. Furthermore, the specific surface area and hydrophilic groups of the three-dimensional hydrogel provide adsorption sites, and the removal of methyl blue (MB) organic dye is as high as 99%. The combination of water evaporation and cleaning capabilities provide a framework for the exploration of the next generation of evaporators for wastewater treatment applications.

Graphical Abstract

Highlights

  • Cellulose composite hydrogel with in-situ polymerized polypyrrole are fabricated.

  • The water transport and evaporation enthalpy are balanced for water evaporation.

  • The hydrogels are unaffected by salt concentrations up to 20%.

  • The hydrogels are suitable for dye waste water cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geng Y, Zhang K, Yang K, Ying P, Hu L, Ding J, Xue J, Sun W, Sun K, Li M (2019) Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon 155:25–33. https://doi.org/10.1016/j.carbon.2019.08.055

    Article  CAS  Google Scholar 

  2. Liu X, Cheng H, Guo Z, Zhan Q, Qian J, Wang X (2018) Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl Mater Interfaces 10:39661–39669. https://doi.org/10.1021/acsami.8b13374

    Article  CAS  Google Scholar 

  3. Li Y, Tao R, Yang Z, Fan Y, Bian T, Fan X, Su C, Shao Z (2022) Cuprous oxide single-crystal film assisted highly efficient solar hydrogen production on large ships for long-term energy storage and zero-emission power generation. J Power Sources 527:231133. https://doi.org/10.1016/j.jpowsour.2022.231133

    Article  CAS  Google Scholar 

  4. Wang Y, Wan Y, Meng X, Jiang L, Wei H, Zhang X, Ma N (2022) Bio-inspired MXene coated wood-like ordered chitosan aerogels for efficient solar steam generating devices. J Mater Sci 57:13962–13973. https://doi.org/10.1007/s10853-022-07494-0

    Article  CAS  Google Scholar 

  5. Irshad MS, Wang X, Abbasi MS, Arshad N, Chen Z, Guo Z, Yu L, Qian J, You J, Mei T (2021) Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustain. Chem Eng 9:3887–3900. https://doi.org/10.1021/acssuschemeng.0c08981

    Article  CAS  Google Scholar 

  6. Ni G, Li G, Boriskina SV, Li H, Yang W, Zhang T, Chen G (2016) Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy 1:1–7. https://doi.org/10.1038/nenergy.2016.126

    Article  CAS  Google Scholar 

  7. Wei W, Guan Q, You C, Yu J, Yuan Z, Qiang P, Zhou C, Ren Y, You Z, Zhang F (2020) Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. J Mater Chem A 8:13927–13934. https://doi.org/10.1039/d0ta02921a

    Article  CAS  Google Scholar 

  8. Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Chen G, Deng T (2018) Solar-driven interfacial evaporation. Nat Energy 3:1031–1041. https://doi.org/10.1038/s41560-018-0260-7

    Article  Google Scholar 

  9. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J (2016) 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics 10:393–398. https://doi.org/10.1038/nphoton.2016.75

    Article  CAS  Google Scholar 

  10. Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y, Hitz E, Luo W, Lu M, Yang B, Hu L (2018) Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater 8:33–41. https://doi.org/10.1002/aenm.201701028

    Article  CAS  Google Scholar 

  11. Ibrahim I, Seo DH, Angeloski A, McDonagh A, Shon HK, Tijing LD (2021) 3D microflowers CuS/Sn2S3 heterostructure for highly efficient solar steam generation and water purification. Sol Energy Mat Sol C 232:111377. https://doi.org/10.1016/j.solmat.2021.111377

    Article  CAS  Google Scholar 

  12. Yu F, Ming X, Xu Y, Chen Z, Meng D, Cheng H, Shi Z, Shen P, Wang X (2019) Quasimetallic molybdenum carbide–based flexible polyvinyl alcohol hydrogels for enhancing solar water evaporation. Adv Mater Interfaces 6:1901168. https://doi.org/10.1002/admi.201901168

    Article  CAS  Google Scholar 

  13. Li Y, Wang Z, Tao R, Fan Y, Xu J, Yu L, Ren N, Wu J, Chen D, Shao Z (2021) Preparation strategies of p-type cuprous oxide and its solar energy conversion performance. Energy Fuel 35:17334–17352. https://doi.org/10.1021/acs.energyfuels.1c02777

    Article  CAS  Google Scholar 

  14. Liu Y, Chen J, Guo D, Cao M, Jiang L (2015) Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl Mater Interfaces 7:13645–13652. https://doi.org/10.1021/acsami.5b03435

    Article  CAS  Google Scholar 

  15. Fang W, Zhao L, Chen H, He X, Li W, Du X, Sun Z, Zhang T, Shen Y (2019) Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation. J Mater Sci 54:12782–12793. https://doi.org/10.1007/s10853-019-03794-0

    Article  CAS  Google Scholar 

  16. Li W, Tian X, Li X, Liu J, Li C, Feng X, Shu C, Yu ZZ (2022) An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J Colloid Interface Sci 606:748–757. https://doi.org/10.1016/j.jcis.2021.08.043

    Article  CAS  Google Scholar 

  17. Zou Y, Yang P, Yang L, Li N, Duan G, Liu X, Li Y (2021) Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer 217:123464. https://doi.org/10.1016/j.polymer.2021.123464

    Article  CAS  Google Scholar 

  18. Li X, Xu W, Tang M, Zhou L, Zhu B, Zhu S, Zhu J (2016) Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. P Natl Acad Sci USA 113:13953–13958. https://doi.org/10.1073/pnas.1613031113

    Article  CAS  Google Scholar 

  19. Ma Y, Jiang T, Zhang A, Cao J (2021) Spent coffee ground-based interfacial solar steam generation. J Mater Cycles Waste 23:604–613. https://doi.org/10.1007/s10163-020-01148-6

    Article  Google Scholar 

  20. Liu X, Hou B, Wang G, Cui Z, Zhu X, Wang X (2018) Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J Mater Res 33:674–684. https://doi.org/10.1557/jmr.2018.25

    Article  CAS  Google Scholar 

  21. Wang G, Fu Y, Guo A, Mei T, Wang J, Li J, Wang X (2017) Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem Mater 29:5629–5635. https://doi.org/10.1021/acs.chemmater.7b01280

    Article  CAS  Google Scholar 

  22. Zhang D, Cai Y, Liang Q, Wu Z, Sheng N, Zhang M, Wang B, Chen S (2020) Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation. ACS Sustain Chem Eng 8:9017–9026. https://doi.org/10.1021/acssuschemeng.0c01707

    Article  CAS  Google Scholar 

  23. Yang Y, Liu C, Zhao M, Wang J, Tian X (2021) Highly efficient solar steam generation under low solar flux via carbon-nanotube-modified sugarcane. Energy Technol-Ger 9:2100588. https://doi.org/10.1002/ente.202100588

    Article  CAS  Google Scholar 

  24. Mu P, Bai W, Fan Y, Zhang Z, Sun H, Zhu Z, Liang W, Li A (2019) Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation. J Mater Chem A 7:9673–9679. https://doi.org/10.1039/c8ta12243a

    Article  CAS  Google Scholar 

  25. Xu Y, Wang J, Yu F, Guo Z, Cheng H, Yin J, Yan L, Wang X (2020) Flexible and efficient solar thermal generators based on polypyrrole coated natural latex foam for multimedia purification. ACS Sustain Chem Eng 8:12053–12062. https://doi.org/10.1021/acssuschemeng.0c03164

    Article  CAS  Google Scholar 

  26. Guo Y, Lu H, Zhao F, Zhou X, Shi W, Yu G (2020) Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv Mater 32:e1907061. https://doi.org/10.1002/adma.201907061

    Article  CAS  Google Scholar 

  27. Yu Y, Zhu X, Wang L, Wu F, Liu S, Chang C, Luo X (2020) A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydr Polym 231:115694. https://doi.org/10.1016/j.carbpol.2019.115694

    Article  CAS  Google Scholar 

  28. Zou Y, Wu X, Li H, Yang L, Zhang C, Wu H, Li Y, Xiao L (2021) Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydr Polym 254:117404. https://doi.org/10.1016/j.carbpol.2020.117404

    Article  CAS  Google Scholar 

  29. Erdal NB, Hakkarainen M (2022) Degradation of cellulose derivatives in laboratory, man-made, and natural environments. Biomacromolecules 23:2713–2729. https://doi.org/10.1021/acs.biomac.2c00336

    Article  CAS  Google Scholar 

  30. Fang H, Feng N, Wu D, Hu D (2021) Design and fabrication of epichlorohydrin-cross-linked methyl cellulose aerogel-based composite materials for magnetic UV response light-to-heat conversion and storage. Biomacromolecules 22:4155–4168. https://doi.org/10.1021/acs.biomac.1c00650

    Article  CAS  Google Scholar 

  31. Chen Y, Xiang Z, Wang D, Kang J, Qi H (2020) Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv 10:23936–23943. https://doi.org/10.1039/d0ra04509h

    Article  CAS  Google Scholar 

  32. Macruz PD, Nippes RP, de Matos Jorge LM, dos Santos OAA (2022) Photocatalytic removal of persistent pollutants using eco-friendly ZnO. J SolGel Sci Technol 104:387–400. https://doi.org/10.1007/s10971-022-05949-z

    Article  CAS  Google Scholar 

  33. Marra M, Dumont M, Palhares HG, Alcamand HA, Houmard M, Nunes EHM (2022) Structural and photocatalytic properties of sol–gel-derived TiO2 samples prepared by conventional and hydrothermal methods using a low amount of water. J SolGel Sci Technol 103:97–107. https://doi.org/10.1007/s10971-022-05780-6

    Article  CAS  Google Scholar 

  34. Zhou X, Guo Y, Zhao F, Yu G (2019) Hydrogels as an emerging material platform for solar water purification. Acc Chem Res 52:3244–3253. https://doi.org/10.1021/acs.accounts.9b00455

    Article  CAS  Google Scholar 

  35. Zhou X, Zhao F, Guo Y, Zhang Y, Yu G (2018) A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ Sci 11:1985–1992. https://doi.org/10.1039/c8ee00567b

    Article  CAS  Google Scholar 

  36. Guo Y, Zhao X, Zhao F, Jiao Z, Zhou X, Yu G (2020) Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ Sci 13:2087–2095. https://doi.org/10.1039/d0ee00399a

    Article  CAS  Google Scholar 

  37. Hanif Z, Tariq MZ, Khan ZA, La M, Choi D, Park SJ (2022) Polypyrrole-coated nanocellulose for solar steam generation: A multi-surface photothermal ink with antibacterial and antifouling properties. Carbohydr Polym 292:119701. https://doi.org/10.1016/j.carbpol.2022.119701

    Article  CAS  Google Scholar 

  38. Zhang L, Tang B, Wu J, Li R, Wang P (2015) Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv Mater 27:4889–4894. https://doi.org/10.1002/adma.201502362

    Article  CAS  Google Scholar 

  39. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13:489–495. https://doi.org/10.1038/s41565-018-0097-z

    Article  CAS  Google Scholar 

  40. Huang W, Hu G, Tian C, Wang X, Tu J, Cao Y, Zhang K (2019) Nature-inspired salt resistant polypyrrole–wood for highly efficient solar steam generation. Sustain Energy Fuels 3:3000–3008. https://doi.org/10.1039/c9se00163h

    Article  CAS  Google Scholar 

  41. Zhou X, Zhao F, Guo Y, Rosenberger B, Yu G (2019) Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 5:eaaw5484. https://doi.org/10.1126/sciadv.aaw5484

    Article  CAS  Google Scholar 

  42. Hu N, Xu Y, Liu Z, Liu M, Shao X, Wang J (2020) Double-layer cellulose hydrogel solar steam generation for high-efficiency desalination. Carbohydr Polym 243:116480. https://doi.org/10.1016/j.carbpol.2020.116480

    Article  CAS  Google Scholar 

  43. Lu Y, Fan D, Wang Y, Xu H, Lu C, Yang X (2021) Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15:10366–10376. https://doi.org/10.1021/acsnano.1c02578

    Article  CAS  Google Scholar 

  44. Venezia V, Avallone PR, Vitiello G, Silvestri B, Grizzuti N, Pasquino R, Luciani G (2022) Adding humic acids to gelatin hydrogels: A way to tune gelation. Biomacromolecules 23(1):443–453. https://doi.org/10.1021/acs.biomac.1c01398

    Article  CAS  Google Scholar 

  45. Hao D, Yang Y, Xu B, Cai Z (2018) Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl Therm Eng 141:406–412. https://doi.org/10.1016/j.applthermaleng.2018.05.117

    Article  CAS  Google Scholar 

  46. Xu Y, Liu D, Xiang H, Ren S, Zhu Z, Liu D, Xu H, Cui F, Wang W (2019) Easily scaled-up photo-thermal membrane with structure-dependent auto-cleaning feature for high-efficient solar desalination. J Membr Sci 586:222–230. https://doi.org/10.1016/j.memsci.2019.05.068

    Article  CAS  Google Scholar 

  47. Zha XJ, Zhao X, Pu JH, Tang LS, Ke K, Bao RY, Bai L, Liu ZY, Yang MB, Yang W (2019) Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl Mater Interfaces 11:36589–36597. https://doi.org/10.1021/acsami.9b10606

    Article  CAS  Google Scholar 

  48. Zhang Y, Cao S, Qiu Z, Yin K, Lei Y, Sun K, Chang X, Li X, Fan R (2019) In situ chemo‐polymerized polypyrrole‐coated filter paper for high‐efficient solar vapor generation. Int J Energy Res 44:1191–1204. https://doi.org/10.1002/er.5012

    Article  CAS  Google Scholar 

  49. Wei D, Wang F, Sun H, Zhu Z, Liang W, Li A (2021) Ionic hyper-cross-linked polymers monoliths for efficient solar steam generation. Eur Polym J 147:110281. https://doi.org/10.1016/j.eurpolymj.2021.110281

    Article  CAS  Google Scholar 

  50. Yu J, Yang G, Li Y, Yang W, Gao J, Lu Q (2014) Synthesis, characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow-discharge electrolysis plasma. Polym Eng Sci 54:2310–2320. https://doi.org/10.1002/pen.23791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB 0303000) and the New Materials Research Key Program of Tianjin (No. 16ZXCLGX00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, W., Jensen, M. et al. Polypyrrole-doped cellulose hydrogel evaporator for steam generation and wastewater cleaning. J Sol-Gel Sci Technol 107, 363–374 (2023). https://doi.org/10.1007/s10971-023-06128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06128-4

Keywords

Navigation