Skip to main content

Advertisement

Log in

Wood–hydrogel composites coated with C3N4 photocatalyst for synchronous solar steam generation and photocatalytic degradation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing interfacial solar steam generation-based water desalination and purification systems is considered a viable solution to freshwater shortages and energy crises. The design and fabrication of thermal materials with broad solar absorption is critical for efficient utilization of full solar spectrum. Herein, a wood-based hydrogel evaporator coated with C3N4 photocatalyst was explored for simultaneous solar evaporation and photocatalytic degradation. C3N4 photocatalyst can absorb ultraviolet photons to generate electron–hole pairs for photocatalytic degradation. At the same time, PDA@ZIF-8 can capture near-infrared visible photons to produce heat, which further improves the photocatalytic efficiency. The optimized evaporator achieves a TC photocatalytic degradation of 96.70%. It also acquires a high solar evaporation rate of 2.64 kg m−2 h−1 with an energy conversion efficiency of 89.23% at 1.0 kW m−2 solar irradiation. This multifunctional wood-based hydrogel evaporator provides a feasible freshwater purification and waste treatment solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lord J, Thomas A, Treat N, Forkin M et al (2021) Global potential for harvesting drinking water from air using solar energy. Nature 598:611–617. https://doi.org/10.1038/s41586-021-03900-w

    Article  Google Scholar 

  2. Wu X, Wang Y, Wu P, Zhao J, Lu Y, Yang X, Xu H (2021) Dual-Zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv Funct Mater 31:2102618. https://doi.org/10.1002/adfm.202102618

    Article  CAS  Google Scholar 

  3. Ding T, Zhou Y, Ong WL, Ho GW (2021) Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater Today 42:178–191. https://doi.org/10.1016/j.mattod.2020.10.022

    Article  CAS  Google Scholar 

  4. Gao M, Zhu L, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 12:841–864. https://doi.org/10.1039/C8EE01146J

    Article  CAS  Google Scholar 

  5. Yang MQ, Tan CF, Lu W, Zeng K, Ho GW (2020) Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv Funct Mater 30:2004460. https://doi.org/10.1002/adfm.202004460

    Article  CAS  Google Scholar 

  6. Esmat M, El-Hosainy H, Tahawy R, Jevasuwan W, Tsunoji N, Fukata N, Ide Y (2021) Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Appl Catal B-Environ 285:119755. https://doi.org/10.1016/j.apcatb.2020.119755

    Article  CAS  Google Scholar 

  7. Fan D, Lu Y, Zhang H, Xu H, Lu C, Tang Y, Yang X (2021) Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl Catal B-Environ 295:120285. https://doi.org/10.1016/j.apcatb.2021.120285

    Article  CAS  Google Scholar 

  8. Li Y, Yan S, Jia X, Wu J, Yang J, Zhao C et al (2021) Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Appl Catal B-Environ 287:119926. https://doi.org/10.1016/j.apcatb.2021.119926

    Article  CAS  Google Scholar 

  9. Li N, Wu J, Lu Y, Zhao Z, Zhang H et al (2018) Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B-Environ 238:27–37. https://doi.org/10.1016/j.apcatb.2018.07.002

    Article  CAS  Google Scholar 

  10. Xiao R, Zhao C, Zou Z, Chen Z et al (2020) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ 268:118382. https://doi.org/10.1016/j.apcatb.2019.118382

    Article  CAS  Google Scholar 

  11. Zhao C, Ding C, Han C, Yang X, Xu J (2020) Lignin-Incorporated supramolecular copolymerization yielding g-C3N4 nanoarchitectures for efficient photocatalytic hydrogen evolution. Sol RRL 5:2000486. https://doi.org/10.1002/solr.202000486

    Article  CAS  Google Scholar 

  12. Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H (2021) Photocatalysis enhanced by external fields. Angew Chem Int Ed 60:16309–16328. https://doi.org/10.1002/anie.202009518

    Article  CAS  Google Scholar 

  13. Gao M, Peh CK, Zhu L, Yilmaz G, Ho GW (2020) Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv Energy Mater 10:2000925. https://doi.org/10.1002/aenm.202000925

    Article  CAS  Google Scholar 

  14. Guo S, Li X, Li J, Wei B (2021) Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat Commun 12:1343. https://doi.org/10.1038/s41467-021-21526-4

    Article  CAS  Google Scholar 

  15. Yang MQ, Shen L, Lu Y, Chee SW et al (2019) Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250–2500 nm) harvesting. Angew Chem Int Ed 58:3077–3081. https://doi.org/10.1002/anie.201810694

    Article  CAS  Google Scholar 

  16. Wang K, Xing Z, Meng D, Zhang S, Li Z, Pan K, Zhou W (2021) Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance. Appl Catal B-Environ 281:119482. https://doi.org/10.1016/j.apcatb.2020.119482

    Article  CAS  Google Scholar 

  17. Lu Y, Zhang H, Wang Y, Zhu X et al (2023) Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/MXene heterostructure. Adv Funct Mater 33:2215061. https://doi.org/10.1002/adfm.202215061

    Article  CAS  Google Scholar 

  18. Wang Y, Wu X, Gao T, Lu Y, Yang X, Chen GY, Owens G, Xu H (2021) Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy 79:105477. https://doi.org/10.1016/j.nanoen.2020.105477

    Article  CAS  Google Scholar 

  19. Wu X, Wu Z, Wang Y, Gao T, Li Q, Xu H (2021) All-Cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv Sci 8:200250. https://doi.org/10.1002/advs.202002501

    Article  CAS  Google Scholar 

  20. Shao B, Wu X, Wang Y, Gao T, Liu Z-Q, Owens G, Xu H (2020) A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J Mater Chem A 8:24703–24709. https://doi.org/10.1039/D0TA08539A

    Article  CAS  Google Scholar 

  21. Lu Y, Zhang H, Fan D, Chen Z, Yang X (2022) Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. J Hazard Mater 423:127128. https://doi.org/10.1016/j.jhazmat.2021.127128

    Article  CAS  Google Scholar 

  22. Lu Y, Fan D, Shen Z, Zhang H, Xu H, Yang X (2022) Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 95:107016. https://doi.org/10.1016/j.nanoen.2022.107016

    Article  CAS  Google Scholar 

  23. Ma N, Fu Q, Hong Y, Hao X, Wang X, Ju J, Sun J (2020) Processing natural wood into an efficient and durable solar steam generation device. ACS Appl Mater Interfaces 12:18165–18173. https://doi.org/10.1021/acsami.0c02481

    Article  CAS  Google Scholar 

  24. Li T, Liu H, Zhao X, Chen G et al (2018) Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv Funct Mater 28:1707134. https://doi.org/10.1002/adfm.201707134

    Article  CAS  Google Scholar 

  25. Zhu M, Li Y, Chen G, Jiang F et al (2017) Tree-Inspired design for high-efficiency water extraction. Adv Mater 29:1704107. https://doi.org/10.1002/adma.201704107

    Article  CAS  Google Scholar 

  26. Xiao S, Chen C, Xia Q, Liu Y et al (2021) Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374:465–471. https://doi.org/10.1126/science.abg9556

    Article  CAS  Google Scholar 

  27. Zhou X, Guo Y, Zhao F, Shi W, Yu G (2020) Topology-Controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv Mater 32:2007012. https://doi.org/10.1002/adma.202007012

    Article  CAS  Google Scholar 

  28. Lu Y, Fan D, Xu H, Min H, Lu C, Lin Z, Yang X (2020) Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification. Sol RRL 4:2000232. https://doi.org/10.1002/solr.202000232

    Article  CAS  Google Scholar 

  29. Wu X, Robson ME, Phelps JL, Tan JS, Shao B, Owens G, Xu H (2019) A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 56:708–715. https://doi.org/10.1016/j.nanoen.2018.12.008

    Article  CAS  Google Scholar 

  30. Dong Y, Du W, Gao X, Guo M (2022) A TiO2/CN-decorated wood carbon for efficient clean water production via simultaneous decontamination and evaporation. J Clean Prod 365:132827. https://doi.org/10.1016/j.jclepro.2022.132827

    Article  CAS  Google Scholar 

  31. Xiao B, Yu F, Xia Y, Wang J, Xiong X, Wang X (2022) Wood-based, bifunctional, mulberry-like nanostructured black Titania evaporator for solar-driven clean water generation. Energy Tech 10:2100679. https://doi.org/10.1002/ente.202100679

    Article  CAS  Google Scholar 

  32. Xi Y, Du C, Li P, Zhou X, Zhou C, Yang S (2022) Combination of photothermal conversion and photocatalysis toward water purification. Ind Eng Chem Res 61:4579–4587. https://doi.org/10.1021/acs.iecr.2c00116

    Article  CAS  Google Scholar 

  33. Ren P, Li J, Zhang X, Yang X (2020) Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material. Mater Today Energy 18:100546. https://doi.org/10.1016/j.mtener.2020.100546

    Article  CAS  Google Scholar 

  34. Xie M, Zhang P, Cao Y, Yan Y, Wang Z, Jin C (2023) A three-dimensional antifungal wooden cone evaporator for highly efficient solar steam generation. npj Clean Water 6:12. https://doi.org/10.1038/s41545-023-00231-3.

  35. Zhang H, Wang X, Wang Y, Gu Z, Chen L (2022) Bi-functional water-purification materials derived from natural wood modified TiO2 by photothermal effect and photocatalysis. RSC Adv 12:26245–26250. https://doi.org/10.1039/D2RA02013K

    Article  CAS  Google Scholar 

  36. Li W, Li X, Liu J, Zeng M, Feng X, Jia X, Yu Z-Z (2021) Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl Mater Interfaces 13:22845–22854. https://doi.org/10.1021/acsami.1c03388

    Article  CAS  Google Scholar 

  37. Yu X, Zhu F, Yang B, Zhou J, Wang K, Wang N, Li N (2023) Novel BiVO4/SiC/Cu2O ternary composite photocatalyst coupled with carbonized wood for simultaneous water evaporation and purification driven by solar energy. Sep Purif Technol 322:124307. https://doi.org/10.1016/j.seppur.2023.124307

    Article  CAS  Google Scholar 

  38. Chen Y, Yang J, Zhu L, Jia X, Wang S, Li Y, Song H (2021) An Integrated highly hydrated cellulose n with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. J Mater Chem A 9:15482–15492. https://doi.org/10.1039/D1TA04325K

    Article  CAS  Google Scholar 

  39. Wang M, Wang P, Zhang J, Li C, Jin Y (2019) A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. Chemsuschem 12:467–472. https://doi.org/10.1002/cssc.201802485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Refractories and Metallury (Wuhan University of Science and Technology, G202203), the National Natural Science Foundation of China (51902164). This work was also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

ZS performed conceptualization, investigation, methodology, data curation, writing-original draft. XW did formal analysis, methodology. DF provides formal analysis, Data curation. XX gave methodology, validation. YL contributes methodology, conceptualization, writing-review and editing, funding acquisition. ZS and XW contributed equally to this work.

Corresponding author

Correspondence to Yi Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Wang, X., Fan, D. et al. Wood–hydrogel composites coated with C3N4 photocatalyst for synchronous solar steam generation and photocatalytic degradation. J Mater Sci 58, 13154–13164 (2023). https://doi.org/10.1007/s10853-023-08849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08849-x

Navigation