Skip to main content
Log in

Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we report the size-controlled synthesis of BiFeO3 nanoparticles via a soft-chemistry route. In this route, the aqueous solution of inorganic Bi and Fe salt is gelled by using acrylamide and bisacrylamide. It is demonstrated that the grain size of resulted BiFeO3 powders can be tailored by varying the ratio of acrylamide to bisacrylamide. With increase in the bisacrylamide content, the grain size decreases monotonously. By using this method, a series of BiFeO3 samples with average grain size ranging from 110 to 52 nm have been prepared. The thermal decomposition process of precursor xerogels and the formation of BiFeO3 phase are investigated by means of X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry analysis, and fourier transform infrared spectroscopy (FTIR). SEM observations reveal that the prepared BiFeO3 nanoparticles are nearly spherical in shape with a narrow diameter distribution. Magnetic hysteresis loop measurement shows that the BiFeO3 nanoparticles exhibit weak ferromagnetic behavior at room temperature, and a saturation magnetization of ~1.56 emu/g is achieved for the 52 nm sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hill NA (2000) J Phys Chem B 104:6694

    Article  CAS  Google Scholar 

  2. Fiebig M, Lottermoser Th, Fröhlich D, Goltsev AV, Pisarev RV (2002) Nature (London) 419:818

  3. Michel C, Moreau J-M, Achenbach GD, Gerson R, James WJ (1969) Solid State Commun 7:701

    Article  CAS  Google Scholar 

  4. Moreau J-M, Michel C, Gerson R, James WJ (1971) J Phys Chem Solids 32:1315

    Article  CAS  Google Scholar 

  5. Tabares-Munoz C, Rivera JP, Monnier A, Schmid H (1985) Jpn J Appl Phys. Suppl 24:1051

    CAS  Google Scholar 

  6. Fischer P, Polomska M, Sosnowska I, Szymanksi M (1980) J Phys C 13:1931

    Article  CAS  Google Scholar 

  7. Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) J Phys C 15:4835

    Article  CAS  Google Scholar 

  8. Ederer C, Spaldin NA (2005) Phys Rev B 71:060401(R)

    Google Scholar 

  9. Luo WJ, Wang DL, Peng XD, Wang FW (2009) J. Sol Gel Sci Technol 51:53

    Article  CAS  Google Scholar 

  10. Kim SH, Jeong JW, Lee JW, Shin SC (2009) Thin Solid Films 517:2749

    Article  CAS  Google Scholar 

  11. Xie SH, Li JY, Proksch R, Liu YM, Zhou YC, Liu YY, Ou Y, Lan LN, Qiao Y (2008) Appl Phys Lett 93:222904

    Article  Google Scholar 

  12. Wei J, Xue DS (2008) Mater Res Bull 43:3368

    Article  CAS  Google Scholar 

  13. Mazumder R, Devi PS, Bhattacharya D, Choudhury P, Sen A, Raja M (2007) Appl Phys Lett 91:062510

    Article  Google Scholar 

  14. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Nano Lett 7:766

    Article  CAS  Google Scholar 

  15. Kumar M, Yadav KL, Varma GD (2008) Mater Lett 62:1159

    Article  CAS  Google Scholar 

  16. Chen C, Cheng JR, Yu SW, Che LJ, Meng ZY (2006) J Cryst Growth 291:135

    Article  CAS  Google Scholar 

  17. Lu XM, Xie JM, Song YZ, Lin JM (2007) J Mater Sci 42:6824

    Article  CAS  Google Scholar 

  18. Basu S, Pal M, Chakravorty D (2008) J Magn Magn Mater 320:3361

    Article  CAS  Google Scholar 

  19. Cho CM, Noh JH, Cho I-S, An J-S, Hong KS, Kim JY (2008) J Am Ceram Soc 91:3753

    Article  CAS  Google Scholar 

  20. Wang YG, Xu G, Yang LL, Ren ZH, Wei X, Weng WJ, Du PY, Shen G, Han GR (2009) Ceram Int 35:1285

    Article  CAS  Google Scholar 

  21. Chaudhuri A, Mitra S, Mandal M, Mandal K (2010) J Alloys Compd 491:703

    Article  CAS  Google Scholar 

  22. Joshi UA, Jang JS, Borse PH, Lee JS (2008) Appl Phys Lett 92:242106

    Article  Google Scholar 

  23. Prado-Gonjal J, Villafuerte-Castrejo ME, Fuentes L, Mora E (2009) Mater Res Bull 44:1734

    Article  CAS  Google Scholar 

  24. Shetty S, Palkar VR, Pinto R (2002) Pramana J Phys 58:1027

    Article  CAS  Google Scholar 

  25. Liu ZK, Qi YJ, Lu CJ (2010) J Mater Sci Mater Electron 21:380

    Article  CAS  Google Scholar 

  26. Das N, Majumdar R, Sen A, Maiti HS (2007) Mater Lett 61:2100

    Article  CAS  Google Scholar 

  27. Farhadi S, Zaidi M (2009) J Mol Catal A Chem 299:18

    Article  CAS  Google Scholar 

  28. Ghosh S, Dasgupta S, Sen A, Maiti HS (2005) Mater Res Bull 40:2073

    Article  CAS  Google Scholar 

  29. Selbach SM, Tybell T, Einarsrud M-A, Grande T (2007) Chem Mater 19:6478

    Article  CAS  Google Scholar 

  30. Ghosh S, Dasgupta S, Sen A, Maiti HS (2005) J Am Ceram Soc 88:1349

    Article  CAS  Google Scholar 

  31. Xu J-H, Ke H, Jia D-C, Wang W, Zhou Y (2008) J Alloys Compd 472:473

    Article  Google Scholar 

  32. Xian T, Yang H, Shen X, Jiang JL, Wei ZQ, Feng WJ (2009) J Alloys Compd 480:889

    Article  CAS  Google Scholar 

  33. Kang YQ, Cao MS, Yuan J, Shi XL (2009) Mater Lett 63:1344

    Article  CAS  Google Scholar 

  34. Jia DC, Xu JH, Ke H, Wang W, Zhou Y (2009) J Eur Ceram Soc 29:3099

    Article  CAS  Google Scholar 

  35. Yang H, Cao ZE, Shen X, Jiang JL, Wei ZQ, Dai JF, Feng WJ (2009) Mater Lett 63:655

    Article  CAS  Google Scholar 

  36. Yang H, Cao ZE, Shen X, Xian T, Feng WJ, Jiang JL, Feng YC, Wei ZQ, Dai JF (2009) J Appl Phys 106:104317

    Article  Google Scholar 

  37. Subba Rao GV, Rao CNR, Ferraro JR (1970) Appl Spectrosc 24:436

    Article  Google Scholar 

  38. Kaczmarek W, Graja A (1975) Solid State Commun 17:851

    Article  CAS  Google Scholar 

  39. Voll D, Beran A, Schneider H (2006) Phys Chem Minerals 33:623

    Article  CAS  Google Scholar 

  40. Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Appl Phys Lett 76:2764

    Article  CAS  Google Scholar 

  41. Klug MP, Alexander LE (1974) X-ray diffraction procedure for polycrystalline and amorphous materials. Wiley, New York, p 634

    Google Scholar 

  42. Rüchel R, Steere RL, Erbe EF (1978) J Chromatogr 166:563

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 50962009), the key Project of Chinese Ministry of Education (Grant No. 209130) and the Natural Science Foundation of Gansu Province (Grant No. 1010RJZA041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Xian, T., Wei, Z.Q. et al. Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. J Sol-Gel Sci Technol 58, 238–243 (2011). https://doi.org/10.1007/s10971-010-2383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2383-6

Keywords

Navigation