Skip to main content
Log in

Fabrication of 0.6Ca0.61Nd0.26TiO3–0.4Nd(Zn0.5Ti0.5)O3 ceramics with high sintering activity and desired microwave dielectric properties from EDTA-gel combustion synthesized powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a successful fabrication of 0.6Ca0.61Nd0.26TiO3–0.4Nd(Zn0.5Ti0.5)O3 (hereinafter abbreviated as 6CNT–4NCT) microwave ceramics with good sintering activity and desired dielectric properties from EDTA-gel combustion synthesized powders in this paper. The as-synthesized nanopowders have been characterized by X–ray diffraction (XRD), Fourier transformation infrared (FT–IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques, respectively. The sintering behavior and dielectric performance have been evaluated on the sintered ceramics. The as-obtained product with amorphous structure could be directly crystallized and produced pure 6CNT–4NCT solid solution phase with orthorhombic perovskite structure at a relatively low temperature of 700 °C, without formation of any intermediate phase. TEM images revealed that homogeneous and well dispersed spherical-shaped nanostructure with an average particle size of 23.8 nm was formed at 800 °C. Well-dense 6CNT–4NCT bulk ceramics with 98.8% relative density were obtained at a relatively low sintering temperature of 1225 °C due to high sintering activity of nanopowders. Moreover, the bulk ceramics exhibited a higher quality factor (× f) value than those prepared via the conventional solid-state reaction method. Desired microwave dielectric properties were achieved at 1200 °C: dielectric constant εr = 57.2, × f = 59,360 GHz, and temperature coefficient of resonant frequency τf = + 1.95 ppm/°C. This study indicates that the EDTA-gel combustion route is a convenient, low-cost, and interesting route to fabricate high-quality microwave ceramics for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Sailaja, N. Murali, K.V. Babu, V. Veeraiah, J. Asian Ceram. Soc. 5, 18–30 (2017)

    Article  Google Scholar 

  2. X.M. Xu, W. Wang, W. Zhou, Z.P. Shao, Small Method 2, 1800071 (2018)

    Article  Google Scholar 

  3. A. Khazraie, I. Elfimov, K. Foyevtsova, G.A. Sawatzky, Phys. Rev. B 101, 035135 (2020)

    Article  CAS  Google Scholar 

  4. D. Frattini, G. Accardo, Y. Kwon, J. Membr. Sci. 599, 117843 (2020)

    Article  CAS  Google Scholar 

  5. Y.H. Xu, Y. Guo, Q. Liu, Y.H. Yin, J.L. Bai, L. Lin, J.J. Tian, Y. Tian, J. Alloys Compd. 821, 153260 (2020)

    Article  CAS  Google Scholar 

  6. F.Y. Huang, H. Su, Y.X. Li, H.W. Zhang, X.L. Tang, J. Adv. Ceram. 9, 471–480 (2020)

    Article  CAS  Google Scholar 

  7. C.Z. Yin, C.C. Li, G.J. Yang, L. Fang, Y.H. Yuan, L.L. Shu, J. Khaliq, J. Eur. Ceram. Soc. 40, 386–390 (2019)

    Article  Google Scholar 

  8. C.J. Peng, J.J. Tan, G.G. Yao, Y.M. Jia, Z.Y. Ren, P. Liu, H.W. Zhang, J. Adv. Ceram. 9, 588–594 (2020)

    Article  Google Scholar 

  9. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, J. Mater. Chem. C 5, 10094 (2017)

    Article  CAS  Google Scholar 

  10. C.Z. Yin, Z.Z. Yu, L.L. Shu, L.J. Liu, Y. Chen, C.C. Li, J. Adv. Ceram. 10, 108–119 (2021)

    Article  CAS  Google Scholar 

  11. M. Yoshida, N. Hara, T. Takada, A. Seki, Jpn. J. Appl. Phys. 36, 6818–6823 (1997)

    Article  CAS  Google Scholar 

  12. Q.L. Zhang, F. Wu, H. Yang, J.F. Li, J. Alloys Compd. 508, 610–615 (2010)

    Article  CAS  Google Scholar 

  13. J.M. Li, C.G. Fan, S.L. Ran, Ceram. Int. 42, 607–614 (2016)

    Article  CAS  Google Scholar 

  14. H.L. Chen, C.L. Huang, Jpn. J. Appl. Phys. 41, 5650–5653 (2002)

    Article  CAS  Google Scholar 

  15. W. Li, M.W. Zhuo, J.L. Shi, Mater. Lett. 58, 365–368 (2004)

    Article  CAS  Google Scholar 

  16. W. Lu, M. Quilitz, H. Schmidt, J. Eur. Ceram. Soc. 27, 3149–3159 (2007)

    Article  CAS  Google Scholar 

  17. H. Wang, C.E. Huang, Q. Deng, L. Zhao, C.Y. Shen, Ceram. Int. 44, 8700–8705 (2018)

    Article  CAS  Google Scholar 

  18. M. Shoba, S. Kaleemulla, C. Krishnamoorthi, Phys. B 583, 412018 (2020)

    Article  CAS  Google Scholar 

  19. Z.X. Xiong, J.R. Huang, C. Fang, Z.Y. Pan, J. Eur. Ceram. Soc. 23, 2515–2518 (2003)

    Article  CAS  Google Scholar 

  20. W.Q. Hu, Z. Dong, Z.Q. Ma, Y.C. Liu, J. Alloys Compd. 821, 153461 (2020)

    Article  CAS  Google Scholar 

  21. M. Racik, K.A. Manikandan, M. Mahendiran, J. Madhavan, M.V.A. Raj, M.G. Mohamed, T. Maiyalagan, Ceram. Int. 46, 6222–6233 (2020)

    Article  Google Scholar 

  22. Q.L. Zhang, F. Wu, H. Yang, D. Zou, J. Mater. Chem. 18, 5339–5343 (2008)

    Article  CAS  Google Scholar 

  23. N. Rathore, A. Kulshreshtha, R.K. Shukl, D. Sharma, Phys. B 582, 4119 (2020)

    Article  Google Scholar 

  24. A.O. Turky, M.M. Rashad, M. Bechelany, Mater. Design 90, 54–59 (2016)

    Article  CAS  Google Scholar 

  25. R.F. Zhu, B.J. Fang, X.Y. Zhao, S. Zhang, Z.H. Chen, J.N. Ding, H.S. Luo, J. Alloys Compd. 735, 496–509 (2018)

    Article  CAS  Google Scholar 

  26. S.A. Kirillova, I.V. Romanova, T.V. Lisnycha, A.V. Potapenko, Electrochim. Acta 286, 163–171 (2018)

    Article  Google Scholar 

  27. S. Butkute, E. Gaigalas, A. Beganskiene, F. Ivanauskas, R. Ramanauskas, A. Kareiva, J. Alloys Compd. 739, 504–509 (2018)

    Article  CAS  Google Scholar 

  28. M.G. Zimicz, A.L. Soldati, S.A. Larrondo, F.D. Prado, J. Therm. Anal. Calorim. 139, 567–575 (2020)

    Article  CAS  Google Scholar 

  29. G.D. Nipan, M.N. Smirnova, M.A. Kop’eva, G.E. Nikiforova, Russ. J. Inorg. Chem. 64, 1304–1308 (2019)

    Article  CAS  Google Scholar 

  30. M.A. Dar, D. Varshney, RSC Adv. 8, 14120 (2018)

    Article  CAS  Google Scholar 

  31. K. Guo, H.H. Chen, X.X. Guo, X.X. Yang, F.F. Xu, J.T. Zhao, J. Alloys Compd. 500, 34–38 (2010)

    Article  CAS  Google Scholar 

  32. P. Dong, S.B. Xia, Y.J. Zhang, Y.N. Zhang, Z.P. Qiu, Y. Yao, Int. J. Electrochem. Sci. 12, 561–575 (2017)

    CAS  Google Scholar 

  33. B. Hakki, P. Coleman, IEEE Trans. Microw. Theory Tech. MTT-8, 402–410 (1960)

    Article  Google Scholar 

  34. W. Courtney, IEEE Trans Microw. Theory Tech.  MTT-18, 476–485 (1970)

    Article  Google Scholar 

  35. X. Liu, R.J. Liu, S. Pan, W. Huang, M. Fan, Y.J. Li, J. Nanosci. Nanotechnol. 19, 5790–5795 (2019)

    Article  CAS  Google Scholar 

  36. D.X. Zhou, G.H. Huang, X.P. Chen, J.M. Xu, S.P. Gong, Mater. Chem. Phys. 84, 33–36 (2004)

    Article  CAS  Google Scholar 

  37. X. Yuan, Y.B. Xu, G.H. Huang, C.L. Zeng, J. Am. Ceram. Soc. 90, 2283–2286 (2007)

    Article  CAS  Google Scholar 

  38. J.K. Park, H. Ryu, H.D. Park, S.Y. Choi, J. Eur. Ceram. Soc. 21, 535–543 (2001)

    Article  CAS  Google Scholar 

  39. H.W. Wang, D.A. Hall, F.R. Sale, J. Am. Ceram. Soc. 75, 124–130 (1992)

    Article  CAS  Google Scholar 

  40. S.N. Hodgson, X. Shen, F.R. Sale, J. Mater. Sci. 35, 5275–5282 (2000)

    Article  CAS  Google Scholar 

  41. F. Amaral, M. Valente, L.C. Costa, Mater. Chem. Phys. 124, 580–586 (2010)

    Article  CAS  Google Scholar 

  42. E.R. Leite, C.M.G. Sousa, E. Longo, J.A. Varela, Ceram. Int. 21, 143–152 (1995)

    Article  CAS  Google Scholar 

  43. W.M. Li, Q.L. Zhang, K. Zhong, L. Chen, H. Yang, F. Wu, Chin. J. Inorg. Chem. 25, 1672–1676 (2009)

    CAS  Google Scholar 

  44. D. Singh, S. Singh, A. Mahajan, Monatsh. Chem. 145, 1235–1241 (2014)

    Article  CAS  Google Scholar 

  45. R. Zhang, Y. Lu, L. Wei, Z.G. Fang, C.H. Lu, Y.R. Ni, Z.Z. Xu, S.Y. Tao, P.W. Li, J. Mater. Sci. Mater. Electron. 26, 9941–9948 (2015)

    Article  CAS  Google Scholar 

  46. F.H. Chen, H.S. Koo, T.Y. Tseng, J. Am. Ceram. Soc. 75, 96–102 (1992)

    Article  CAS  Google Scholar 

  47. Y. Xu, Y. He, L. Wang, J. Mater. Res. 16, 1195–1199 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by University Natural Science Reserach Project of Anhui Province (Grant No. KJ2019A0054).

Funding

This study was supported by University Natural Science Research Project of Anhui Province (Grant No. KJ2019A0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamao Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, B., Xu, D. et al. Fabrication of 0.6Ca0.61Nd0.26TiO3–0.4Nd(Zn0.5Ti0.5)O3 ceramics with high sintering activity and desired microwave dielectric properties from EDTA-gel combustion synthesized powders. J Mater Sci: Mater Electron 32, 28605–28617 (2021). https://doi.org/10.1007/s10854-021-07237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07237-y

Navigation