Skip to main content
Log in

Effects of Mn–Zr substitution on the magnetic properties of Ba-ferrites fabricated by sol–gel auto-combustion

  • Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polycrystalline samples of BaMnxZrxFe11.5−2×O18.25 having different doping contents of Mn–Zr were fabricated and their magnetic properties investigated accordingly. The results show that the average crystalline size of this specimen is about 150 nm. As the doping content, x, of Mn–Zr increases from 0.1 to 1, the coercive force, Hc, continuously decreases from 368 kA/m to 120 kA/m, while the saturation magnetization, Ms, initially increases, and then subsequently decreased. The maximum Ms obtained in BaMnxZrxFe11.5−2×O18.25 with x = 0.3 is 63.03 Am2/kg. Moreover, residual magnetization, Mr, increases initially and then consistently decreased as the doping content, x, increases. The maximum Mr obtained when x is 0.2 is 30.85 Am2/kg. This study suggests that the magnetic properties of Barium ferrites can be adjusted to suit various application requirements by doping with different Mn and Zr contents at Fe sites.

Highlights

  • Mn–Zr doped Barium ferrites were fabricated by a method of sol–gel auto-combustion with self-propagating at high temperature.

  • The substitution of Mn–Zr at Fe sites occurred and the pure Barium hexaferrite phase was formed in the samples.

  • Magnetic properties of Barium ferrites can be successfully adjusted by varying the doping contents of Mn and Zr to meet different application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mirzaee O, Mohamady R, Ghasemi A, AlizadFarzin Y (2015) Int J Mod Phys B 29:1550090

    Article  CAS  Google Scholar 

  2. Ebrahim R, Hadi A, Reza S (2017) Int J Mod Phys B 31:1750271

    Google Scholar 

  3. Rane MV, Bahadur D, Mandal SK, Patni MJ (1996) J Magn Magn Mater 153:L1–L4

    Article  CAS  Google Scholar 

  4. Costa MM, Pires Júnior GFM, Sombra ASB (2010) J Mater Chem Phys 123:35–39

    Article  CAS  Google Scholar 

  5. Bierlich S, Topfer J (2012) J Magn Magn Mater 324:1804–1808

    Article  CAS  Google Scholar 

  6. MdGazzali PM, Chandrasekaran G (2014) J Mater Sci: Mater Electron 25:702–709

    CAS  Google Scholar 

  7. Mosleh Z, Kameli P, Ranjbar M, Salamati H (2014) Ceram Int 40:7279–7284

    Article  CAS  Google Scholar 

  8. Zhou J, Ma HL, Zhong MJ, Xu GQ, Yue ZY, He ZM (2006) J Magn Magn Mater 305:467–469

    Article  CAS  Google Scholar 

  9. Fujiwara T (1985) IEEE Trans Magn 21:1480–1485

    Article  Google Scholar 

  10. Ruan SP, Xu BK, Suo H, Wu FQ, Xiang SQ, Zhao MY (2000) J Magn Magn Mater 212:175–177

    Article  CAS  Google Scholar 

  11. Sugimoto S, Kpndo S, Okayama K, Nakamura H (1999) IEEE Trans Magn 35:3154–3160

    Article  CAS  Google Scholar 

  12. Cho HS, Kim SS (1999) IEEE Trans Magn 35:3151–3153

    Article  CAS  Google Scholar 

  13. Yang XF, Jin Q, Chen ZP, Li QL, Liu B (2014) J Magn Magn Mater 367:64–68

    Article  CAS  Google Scholar 

  14. Dong CS, Wang X, Zhou PH, Liu T, Xie JL, Deng LJ (2014) J Magn Magn Mater 354:340–344

    Article  CAS  Google Scholar 

  15. Wang Y, Huang Y, Wang QF, He Q, Zong M (2013) J Sol-Gel Sci Technol 67:344–350

    Article  CAS  Google Scholar 

  16. Batlle X, Garcia M, Tejada J (1993) J Appl Phys 74:3333–3340

    Article  CAS  Google Scholar 

  17. Kubo O, Ido T, Yokoyama H (1982) IEEE Trans Magn 18:1122–1126

    Article  Google Scholar 

  18. Pankhurst QA, Jones DH, Morrish AH (1986) In: Proceedings of the ICF-5, India, p 323

  19. Wartewig P, Krause MK, Esquinazi P, Rösler S, Sonntag R (1999) J Magn Magn Mater 192:83–99

    Article  CAS  Google Scholar 

  20. Batlle X, Pernet M, Obradors X (1989) In: Proceedings of the ICF-5, India, p 423

  21. Agresti DG, Shelfer TD, Hong YK, Paig YJ (1989) IEEE Trans Magn 25:4069–4071

    Article  CAS  Google Scholar 

  22. Sözeri H, Deligöz H, Kavas H, Baykal A (2014) Ceram Int 40:8645–8657

    Article  Google Scholar 

  23. Fang Q, Cheng H, Huang K, Wang J, Li R, Jiao Y (2005) J Magn Magn Mater 294:281–286

    Article  CAS  Google Scholar 

  24. Singh C, Bindra-Narang S, Hudiara IS, Bai Y (2008) J Alloy Compd 464:429–433

    Article  CAS  Google Scholar 

  25. Xu GQ, Ma HL, Zhong MJ, Zhou J, Yue ZY, He ZM (2006) J Magn Magn Mater 301:383–388

    Article  CAS  Google Scholar 

  26. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) J Magn Magn Mater 308:289–295

    Article  CAS  Google Scholar 

  27. Gruskova A, Slama J, Dosoudil R, Kevicka D, Jancarik V, Toth I (2002) J Magn Magn Mater 242–245:423–425

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Young Scientists Fund of the National Natural Science Foundation of China under Grant (Nos. 11905096, 51801092, and 51802139), the Key Science and Technology Program of Henan Province under Grant (No. 172102210404), the Education Department of Henan Province under Grant (Nos. 18B140007, 20B140009, 19A140005, and 19A430020), and the Program for Youth Scholar teachers Supporting Plan in Universities of Henan Province under Grant (No. 2018GGJS158) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruirui Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Sun, R., Xiao, H. et al. Effects of Mn–Zr substitution on the magnetic properties of Ba-ferrites fabricated by sol–gel auto-combustion. J Sol-Gel Sci Technol 95, 393–397 (2020). https://doi.org/10.1007/s10971-020-05304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05304-0

Keywords

Navigation