Skip to main content
Log in

Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study explored the microstructural and magnetic features of NiFe2−xDyxO4 (x ≤ 0.10) NPs (nanoparticles) that were synthesized by sol–gel auto-combustion method. The single phase of spinel ferrite has been verified for all samples without any impurity. The cubic morphology of the products was also showed by SEM. Room temperature (300 K) and 10 K magnetization curves were recorded applying a dc magnetic field up to ±50 kOe and it was observed that magnetic features of NiFe2O4 NPs significantly changed by the substitution of Dy3+ ion. Magnetization measurements showed low order of 300 and 10 K magnetic parameters (such as Keff, coercivity and anisotropy field values), revealing soft ferrimagnetic behaviors of all pristine and doped NiDyxFe2−xO4 (0.00 ≤ x ≤ 0.10) NPs at both 300 and 10 K. Pristine NiFe2O4 has maximum magnetic moment and saturation magnetization values among all samples. Dy3+ substitution showed a slight decrement in magnetization values compared with pristine sample. A slight increase in coercivity was noticed with Dy3+ substitution. Squareness ratios (SQRs) have a range between 0.144 and 0.324. These values are smaller than the theoretical limit of 0.50, implying the multi-domain nature for NPs. Blocking temperature (TB) was calculated as 28 K for NiFe2O4 NPs.

Pure phase of NiDyxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles were prepared via sol–gel auto-combustion process. The structure, morphology, and magnetic properties were investigated.

Highlights

  • NiFe2−xDyxO4 (x ≤ 0.10) NPs were prepared via sol–gel auto-combustion method.

  • XRD analysis indicates the formation of pure single phase of spinel ferrites.

  • NiFe2−xDyxO4 (x ≤ 0.10) NPs exhibit soft ferrimagnetic nature.

  • All prepared NiFe2−xDyxO4 (x ≤ 0.10) NPs displayed a multi-domain nature.

  • Blocking temperature (TB) was calculated as 28 K for NiFe2O4 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kurtan U, Amir M, Yildiz A, Baykal A (2016) Synthesis of magnetically recyclable MnFe2O4@SiO2@Ag nanocatalyst: its high catalytic performances for azo dyes and nitro compounds reduction. Appl Surf Sci 376:16–25

    Article  CAS  Google Scholar 

  2. Raghasudha M, Ravinder D, Veerasomaiah P (2014) Thermoelectric power studies of Co–Cr nano ferrites. J Alloy Compd 604:276–280

    Article  CAS  Google Scholar 

  3. Nikumbh A, Pawar R, Nighot D, Gugale G, Sangale M, Khanvilkar M, Nagawade A (2014) Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 355:201–209

    Article  CAS  Google Scholar 

  4. Sadaqat A, Almessiere M, Slimani Y, Guner S, Sertkol M, Albetran H, Baykal A, Shirsath SE, Ozcelik B, Ercan I (2019) Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceram Int 45:22538–22546

    Article  CAS  Google Scholar 

  5. Almessiere M, Slimani Y, Guner S, Nawaz M, Baykal A, Aldakheel F, Sadaqat A, Ercan I (2019) Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J Mol Struct 1195:269–279

    Article  CAS  Google Scholar 

  6. Almessiere M, Slimani Y, Kurtan U, Guner S, Sertkol M, Shirsath SE, Akhtar S, Baykal A, Ercan I (2019) Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2-xO4 (0.0≤ x≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochem:104638

  7. Heiba ZK, Mohamed MB, Arda L, Dogan N (2015) Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J Magn Magn Mater 391:195–202

    Article  CAS  Google Scholar 

  8. Naik S, Salker A (2012) Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem 22:2740–2750

    Article  CAS  Google Scholar 

  9. Eltabey M, Agami W, Mohsen H (2014) Improvement of the magnetic properties for Mn–Ni–Zn ferrites by rare earth Nd3+ ion substitution. J Adv Res 5:601–605

    Article  CAS  Google Scholar 

  10. Ahmed M, Okasha N, El-Sayed M (2007) Enhancement of the physical properties of rare-earth-substituted Mn–Zn ferrites prepared by flash method. Ceram Int 33:49–58

    Article  CAS  Google Scholar 

  11. Karimi Z, Mohammadifar Y, Shokrollahi H, Asl SK, Yousefi G, Karimi L (2014) Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J Magn Magn Mater 361:150–156

    Article  CAS  Google Scholar 

  12. Murugesan C, Sathyamoorthy B, Chandrasekaran G (2015) Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles. Phys Scr 90:085809

    Article  Google Scholar 

  13. Naik PP, Tangsali R, Meena S, Yusuf S (2017) Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater Chem Phys 191:215–224

    Article  CAS  Google Scholar 

  14. Kadam A, Shinde S, Yadav S, Patil P, Rajpure K (2013) Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J Magn Magn Mater 329:59–64

    Article  CAS  Google Scholar 

  15. Almessiere MA, Slimani Y, Güngüneş H, Ali S, Manikandan A, Ercan I, Baykal A, Trukhanov A (2019) Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials 9:820

    Article  CAS  Google Scholar 

  16. Shirsath SE, Mane ML, Yasukawa Y, Liu X, Morisako A (2013) Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: influence@pH. J Nanopart Res 15:1976

    Article  Google Scholar 

  17. Shirsath SE, Mane ML, Yasukawa Y, Liu X, Morisakoa A (2014) Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2− ferromagnetic nanoparticles. Phys Chem Chem Phys 16:2347–2357

    Article  CAS  Google Scholar 

  18. Almessiere MA, Slimani Y, Baykal A (2018) Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol–gel combustion method. J Alloy Compd 762:389–397

    Article  CAS  Google Scholar 

  19. Almessiere MA, Slimani Y, El Sayed HS, Baykal A (2019) Morphology and magnetic traits of strontium nanohexaferrites: effects of manganese/yttrium co-substitution. J Rare Earths 37:732–740

    Article  CAS  Google Scholar 

  20. Almessiere MA, Slimani Y, El Sayed HS, Baykal A, Ercan I (2019) Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. J Magn Magn Mater 471:124–132

    Article  CAS  Google Scholar 

  21. Zi ZF, Ma XH, Wie YY, Liu QC, Zhang M, Zhu XB (2018) Influence of La-Mn substitutions on magnetic properties of M-type strontium hexaferrites. AIP Adv 8:056235

    Article  Google Scholar 

  22. Qui J, Gu M, Shen H (2005) Microwave absorption properties of Al and Cr-substituted M-type barium hexaferrite. J Magn Magn Mater 295:263–268

    Article  Google Scholar 

  23. Almessiere MA, Slimani Y, Baykal A (2018) Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: effect of vanadium substitution. J Alloy Compd 767:966–975

    Article  CAS  Google Scholar 

  24. Baiga MM, Yousufa MA, Warsia MF, Agboola PO, Sher M, Shakir I (2019) Surfactant assisted synthesis of rare earth Dy3+ substituted MnFe2O4 nanoparticles. Ceram Int 45:18014–18022

    Article  Google Scholar 

  25. Poudel TP, Rai BK, Yoon S, Guragain D, Neupane D, Mishra SR (2019) The effect of gadolinium substitution in inverse spinel nickel ferrite: structural, magnetic, and Mossbauer study. J Alloy Compd 802:609–619

    Article  CAS  Google Scholar 

  26. Akhtar MN, Khan MAzhar (2018) Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J Magn Magn Mater 460:268–277

    Article  CAS  Google Scholar 

  27. Tijerina-Rosaa A, Greneche JM, Fuentes AF, Rodriguez-Hernandez J, Menéndez JL, Rodríguez-González FJ, Montemayor SagrarioM (2019) Partial substitution of cobalt by rare-earths (Gd or Sm) in cobalt ferrite: effect on its microstructure and magnetic properties. Cer Int 45:22920–22929

    Article  Google Scholar 

  28. Match! software version 3.9.0.158. (2019) https://www.crystalimpact.com/match/download.htm

  29. Shirsath SE, Wang D, Jadhav SS, Mane ML, Li S (2018) Ferrites obtained by sol–gel method. In: Klein L, Aparicio M, Jitianu A (Eds.) Handbook of sol–gel science and technology. Springer, Cham, p 695–735

    Chapter  Google Scholar 

  30. Kabbur SM, Ghodake UR, Nadargi DY, Kambale RC, Suryavanshi SS (2018) Effect of Dy3+ substitution on structural and magnetic properties of nanocrsytalline Ni-Cu-Zn ferrites. J Magn Magn Mater 451:665–675

    Article  CAS  Google Scholar 

  31. Cullity BD, Graham CD (2008) Introduction to magnetic materials. Wiley, Hoboken, NJ

    Book  Google Scholar 

  32. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc A 240(826):599–642

    Google Scholar 

  33. George M, John AM, Nair SS, Joy PA, Ananatharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195

    Article  CAS  Google Scholar 

  34. Pulisova P, Kovac J, Voigt A, Raschman P (2013) Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two-step direct microemulsions synthesis. J Magn Magn Mater 341:93–99

    Article  CAS  Google Scholar 

  35. Almessiere MA, Slimani Y, El Sayed HS, Baykal A, Ali S, Ercan I (2019) J Supercond Nov Magn 32:1437–1445

    Article  CAS  Google Scholar 

  36. Almessiere MA, Slimani Y, Sertkol M, Khan FA, Nawaz M, Tombuloglu H, Baykal A (2019) Ce–Nd Co-substituted nanospinel cobalt ferrites: an investigation of their structural, magnetic, optical, and apoptotic properties. Ceram Int 45:16147–16156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Almessiere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This material has not been published in whole or in part elsewhere; the paper is not currently being considered for publication in another journal; all authors have been personally and actively involved in substantive work leading to the paper and will hold themselves jointly and individually responsible for its content.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimani, Y., Almessiere, M.A., Güner, S. et al. Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. J Sol-Gel Sci Technol 95, 202–210 (2020). https://doi.org/10.1007/s10971-020-05292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05292-1

Keywords

Navigation