Skip to main content
Log in

One-step novel synthesis of CoFe2O4/graphene composites for organic dye removal

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present study was adopted for synthesis of CoFe2O4/graphene nanocomposites via facile, environment friendly and novel in-situ reduction-auto-combustion sucrose route. The graphene-based materials as well as the obtained nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis-thermogravimetry (DTA-TG) and vibrating sample magnetometry (VSM) measurements. These measurements confirmed the formation of densely distributed CoFe2O4 nanoparticles on graphene nanosheets when the reduction of graphene oxide (GO) component was carried out through reflux. On the other hand, when the process was carried out without reflux, the in-situ reduction of GO during ferrite auto-combustion resulted in the formation of uniformly distributed CoFe2O4 nanoparticles on reduced graphene oxide (rGO) nanosheets. The changes in the thermal stability of the prepared graphene and their ferrite nanoncomposites was discussed in the view of exposed surface area and ferrite’s agglomeration phenomena. The obtained nanocomposites were examined for the adsorption/removal of toxic malachite green (MG) dye from aqueous media depending on their magnetic sensitivity besides their porous surface morphology.

Schematic illustration for the formation of CoFe2O4/graphene hetero-architecture.

Highlights

  • CoFe2O4/Graphene was synthesized via novel reduction-auto-combustion sucrose route.

  • On reflux, CoFe2O4 nanoparticles densely anchored on graphene nanosheets were obtained.

  • Without reflux, uniformly distributed CoFe2O4 nanoparticles on rGO nanosheets were obtained.

  • The nanocomposites were examined for adsorption/removal of MG dye from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldman A (2006) Modern ferrite technology, 2nd edition. Springer, New York, NY

    Google Scholar 

  2. Kashevsky BE, Agabekov VE, Kashevsky SB, Kekalo KA, Manina EY, Prokhorov IV, Ulashchik VS (2008) Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia. Particuology 6:322–333

    Article  Google Scholar 

  3. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  4. Hummers SW, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  5. Lingamdinne LP, Choi Y, Kim Yang I, Koduru Jr J, Chang Y (2017) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156

    Article  Google Scholar 

  6. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K (2012) One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50:2337–2346

    Article  Google Scholar 

  7. Lu K, Zhao G, Wang X (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234

    Article  Google Scholar 

  8. Li N, Zheng M, Chang X, Ji G, Lu H, Xue L, Pan L, Cao J (2011) Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J Sol State Chem 184:953–958

    Article  Google Scholar 

  9. Fu Y, Chen H, Sun X, Wang X (2012) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ 111–112:280–287

    Article  Google Scholar 

  10. Farghali AA, Bahgat M, El Rouby WMA, Khedr MH (2013) Preparation, decoration and characterization of graphene sheets for methyl green adsorption. J Alloy Compd 555:193–200

    Article  Google Scholar 

  11. Fu M, Jiao Q, Zhao Y (2013) In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Mater Charact 86:303–315

    Article  Google Scholar 

  12. Stefanescu M, Bozdog M, Muntean C, Stefanescu O, Vlase T (2015) Synthesis and magnetic properties of Co1-xZnxFe2O4 (x=0-1) nano- powders by thermal decomposition of Co(II), Zn(II) and Fe(III) carboxylates. J Magn Magn Mater 393:92–98

    Article  Google Scholar 

  13. Slatineanu T, Iordan AR, Oancea V, Palamaru MN, Dumitru I, Constantin CP, Caltun OF (2013) Magnetic and dielectric properties of Co–Zn ferrite. Mater Sci Eng B 178:1040–1047

    Article  Google Scholar 

  14. Sundararajan M, Kennedy LJ, Vijaya JJ, Aruldoss U (2015) Microwave combustion synthesis of Co1-xZnxFe2O4 (0≤x≤0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 140:421–430

    Article  Google Scholar 

  15. Lopez J, Gonzalez-Bahamo LF, Prado J, Caicedo JC, Zambrano G, Gomez ME, Esteve J, Prieto P (2012) Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J Magn Magn Mater 324:394–402

    Article  Google Scholar 

  16. Zhang Y, Stangle GC (1994) Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J Mater Res 9:1997–2004

    Article  Google Scholar 

  17. Kumar S, Singh V, Aggarwal S, Mandal UK, Kotnala RK (2012) Monodisperse Co, Zn-Ferrite nanocrystals: controlled synthesis, characterization and magnetic properties. J Magn Magn Mater 324:3683–3689

    Article  Google Scholar 

  18. Hou C, Yu H, Zhang Q, Li Y, Wang H (2010) Preparation and magnetic property analysis of monodisperse Co–Zn ferrite nanospheres. J Alloy Compd 491:431–435

    Article  Google Scholar 

  19. Gozuak F, Koseoglu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321:2170–2177

    Article  Google Scholar 

  20. Gabal MA, Kosa S, El Muttairi TS (2014) Magnetic dilution effect of nano-crystalline NiFe2O4 synthesized via sucrose-assisted combustion route. Ceram Int 40:675–681

    Article  Google Scholar 

  21. Gabal MA, Al-Juaid AA, Al-Rashed SM, Hussein MA, Al-Marzouki F (2017) Synthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route. J Magn Magn Mater 426:670–679

    Article  Google Scholar 

  22. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA (2017) Synthesis and characterization of nano-sized CoFe2O4 via facile methods: a comparative study. Mater Res Bull 89:68–78

    Article  Google Scholar 

  23. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  24. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  Google Scholar 

  25. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  Google Scholar 

  26. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  27. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  28. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  Google Scholar 

  29. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Binh S, Nguyen T, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  30. Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 12:1–12

    Article  Google Scholar 

  31. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114

    Article  Google Scholar 

  32. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  Google Scholar 

  33. Fan X, Shi X, Wang J, Shi Y, Wang J, Xu L, Gou L, Li D (2013) Sucrose assisted hydrothermal synthesis of SnO2/graphene nanocomposites with improved lithium storage properties. J Sol State Electrochem 17:201–208

    Article  Google Scholar 

  34. Li D, Muller MB, Gilje S, Kaner RB, Wallace G (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  35. Fu Y, Chen Q, He M, Wan Y, Sun X, Xia H, Wang X (2012) Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind Eng Chem Res 51:11700–11709

    Article  Google Scholar 

  36. Fei P, Wang Q, Zhong M, Su B (2016) Preparation and adsorption properties of enhanced magnetic zinc ferrite-reduced graphene oxide nanocomposites via a facile one-pot solvothermal method. J Alloy Compd 685:411–417

    Article  Google Scholar 

  37. Hassan HMA, Abdelsayed V, Khedr AS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837

    Article  Google Scholar 

  38. Jnaneshwara DM, Avadhani DN, Prasad BD, Nagabhushana BM, Nagabhushana H, Sharma SC, Prashantha SC, Shivakumara C (2014) Effect of zinc substitution on the nanocobalt ferrite powders for nanoelectronic devices. J Alloy Compd 587:50–58

    Article  Google Scholar 

  39. Varshney D, Verma K, Kumar A (2011) Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A=Zn, Mg and x=0.0, 0.5) ferrites. J Mol Struct 1006:447–452

    Article  Google Scholar 

  40. Rani R, Sharma SK, Pirota KR, Knobel M, Thakur S, Singh M (2012) Effect of zinc concentration on the magnetic properties of cobalt–zinc nanoferrite. Ceram Int 38:2389–2394

    Article  Google Scholar 

  41. Gyergyek S, Makovec D, Kodre A, Arcon I, Jagodic M, Drofenik M (2010) Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles J Nanopart Res 12:1263–1273

    Article  Google Scholar 

  42. Baba AA, Adekola AF, Bale RB (2009) Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries. J Hazard Mater 171:838–844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Abou Zeid, K.M., El-Gendy, A.A. et al. One-step novel synthesis of CoFe2O4/graphene composites for organic dye removal. J Sol-Gel Sci Technol 89, 743–753 (2019). https://doi.org/10.1007/s10971-019-04917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04917-4

Keywords

Navigation