Skip to main content
Log in

Study of crystallization behavior and kinetics of yttria-50 vol% magnesia composite nanopowders using a non-isothermal process

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, yttria-magnesia composite nanopowders with high specific surface area were synthesized by the sol–gel method. The crystallization kinetics of MgO–Y2O3 composite nanopowders were studied by the non-isothermal differential scanning calorimetry (DSC) technique. The crystallization activation energy of MgO–Y2O3 composite nanopowder was obtained 106.41 kJ/mol. The Avrami exponent (n) was 2.96 that corresponded to the three-dimensional growth. As-synthesized MgO–Y2O3 composite nanopowder had the average particle size of 10–15 nm with 140.42 m2/g specific surface area. The FESEM results showed that MgO and Y2O3 phases had a uniform phase distribution in the MgO–Y2O3 composite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Razavi RS, Ahsanzadeh-Vadeqani M, Barekat M et al. (2016) Effect of sintering temperature on microstructural and optical properties of transparent yttria ceramics fabricated by spark plasma sintering. Ceram Int 42:7819–7823

    Article  Google Scholar 

  2. Jiang D, Mukherjee AK (2008) Synthesis of Y2O3–MgO nanopowder and infrared transmission of the sintered nanocomposite. Nanosci Eng 7030:703007

  3. Harris DC, Cambrea LR, Johnson LF et al. (2013) Properties of an infrared-transparent MgO: Y2O3 nanocomposite. J Am Ceram Soc 96:3828–3835

    Article  Google Scholar 

  4. Jiang D, Mukherjee AK (2010) Spark plasma sintering of an infrared-transparent Y2O3–MgO nanocomposite. J Am Ceram Soc 93:769–773

    Article  Google Scholar 

  5. Stefanik T, Gentilman R, Hogan P (2007) Nanocomposite optical ceramics for infrared windows and domes. In: Def. Secure. Symp. SPIE, USA. p 65450A

  6. Xu S, Li J, Li C et al. (2015) Hot pressing of infrared-transparent Y2O3–MgO nanocomposites using sol–gel combustion synthesized powders. J Am Ceram Soc 98:1019–1026

    Google Scholar 

  7. Xu S, Li J, Li C et al. (2015) Infrared-transparent Y2O3–MgO nanocomposites fabricated by the glucose sol–gel combustion and hot-pressing technique. J Am Ceram Soc 98:2796–2802

    Article  Google Scholar 

  8. Hassanzadeh-Tabrizi SA, Taheri-Nassaj E (2008) Effects of milling and calcination temperature on the compressibility and sinterability of a nanocrystalline Al2O3—Y3Al5O12 composite powder. J Am Ceram Soc 91:3546–3551

    Article  Google Scholar 

  9. Huang L, Yao W, Liu J et al. (2014) Spark plasma sintering and mechanical behavior of magnesia—yttria (50:50vol.%) nanocomposites. Scr Mater 75:18–21

    Article  Google Scholar 

  10. Chen C-H, Garofano JKM, Muoto CK et al. (2011) A foaming esterification sol—gel route for the synthesis of magnesia—yttria nanocomposites. J Am Ceram Soc 94:367–371

    Article  Google Scholar 

  11. Chaim R, Shlayer A, Estournes C (2009) Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J Eur Ceram Soc 29:91–98

    Article  Google Scholar 

  12. Chaim R, Shen Z, Nygren M (2004) Erratum: transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J Mater Res 19:2527–2531

    Article  Google Scholar 

  13. Chaonan W, Weiping Z, Min Y (2009) Preparation and spectroscopic properties of Y2O3: Eu 3+nanopowders and ceramics. J Alloys Compd 474:180–184

    Article  Google Scholar 

  14. Mangalaraja RV, Mouzon J, Hedström P et al. (2008) Combustion synthesis of Y2O3 and Yb—Y2O3: part I. Nanopowders and their characterization. J Mater Process Technol 208:415–422

    Article  Google Scholar 

  15. Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2016) The effect of solution pH value on the morphology of ceria—yttria Co stabilized zirconia particles prepared using the polymerizable complex method. J Clust Sci 27:469–483

    Article  Google Scholar 

  16. Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2015) Synthesis and characterization of ceria-yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. J Sol–Gel Sci Technol 74:603–612

    Article  Google Scholar 

  17. Oghaz MH, Razavi RS, Loghman-Estark MR, Ghasemi R (2012) Optimization of morphology and particle size of modified sol–gel synthesized YSZ nanopowder using Taguchi method. J Nano Res 21:65–70

    Article  Google Scholar 

  18. Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol–Gel Sci Technol 73:227–241

    Article  Google Scholar 

  19. Suñol JJ, Bonastre J (2010) Crystallization kinetics of metallic glasses. J Therm Anal Calorim 102:447–450

    Article  Google Scholar 

  20. Hasheminezhad SA, Haddad-Sabzevar M, Sahebian S (2012) Non-isothermal crystallization kinetics of Co67Fe4Cr7Si8B14 amorphous alloy. Mater Sci Forum 706:1311–1317

    Article  Google Scholar 

  21. Gao YQ, Wang W (1986) On the activation energy of crystallization in metallic glasses. J Non Cryst Solids 81:129–134

    Article  Google Scholar 

  22. Abu-Sehly AA, Alamri SN, Joraid AA (2009) Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd 476:348–351

    Article  Google Scholar 

  23. Málek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253

    Article  Google Scholar 

  24. Elabbar AA, El-Oyoun MA, Abu-Sehly AA, Alamri SN (2008) Crystallization kinetics study of Pb 4.3 Se 95.7 chalcogenide glass using DSC technique. J Phys Chem Solids 69:2527–2530

    Article  Google Scholar 

  25. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  Google Scholar 

  26. Çelikbilek M, Ersundu AE, Ayd/in S (2012) Crystallization kinetics of amorphous materials. INTECH Open Access Publisher

  27. Loghman-Estarki MR, Davar F, Ghorbani S et al. (2016) Synthesis and characterization of aluminum Oxy nitride (AlON) from the nanosized gel precursor. Ceram Int 42:16861–16866

    Article  Google Scholar 

  28. Ghaderi M, Logman-Estarki MR, Razavi RS, Ghorbani S (2016) Spark plasma sintering of transparent Y2O3 ceramic using hydrothermal synthesized nanopowders. Ceram Int 42:14403–14410

    Article  Google Scholar 

  29. Shirinparvar S, Razavi RS, Davar F et al. (2016) Synthesis, characterization and optical properties of Zr+ 4/La+ 3/Nd+ 3 tri-doped yttria nanopowder by sol–gel combustion method. Ceram Int 42:10551–10558

    Article  Google Scholar 

  30. Zhang J, An L, Liu M et al. (2009) Sintering of Yb3+: Y2O3 transparent ceramics in hydrogen atmosphere. J Eur Ceram Soc 29:305–309

    Article  Google Scholar 

  31. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghorbani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhaji, A., Shoja Razavi, R., Ghasemi, A. et al. Study of crystallization behavior and kinetics of yttria-50 vol% magnesia composite nanopowders using a non-isothermal process. J Sol-Gel Sci Technol 85, 93–102 (2018). https://doi.org/10.1007/s10971-017-4520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4520-y

Keywords

Navigation