Skip to main content
Log in

Iron oxide-silica nanocomposites yielded by chemical route and sol–gel method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles yielded by chemical route were surface modified with stabilizing agents being further coated by sol–gel method with silica shell to be used for various applications. Iron oxide magnetic cores were dispersed in water by single citrate layer and, respectively, by double oleate hydrophilic coating. Sol–gel reaction with tetraethylorthosilicate provided further coating with silica that confers increased reactivity for ligand coupling. Microstructural and magnetic properties were investigated by standard methods evidencing nanometric size, good crystallinity, and superparamagnetic behavior. Comparative analysis evidenced similar crystallite size for both citrate- and oleate-coated magnetic nanoparticles, while granularity was changed after silica adding. Saturation magnetization diminished less for oleate-stabilized nanoparticles than for citrate-stabilized ones after silica coating and moderate thermal treatment. Such prepared magnetic nanocomposites could have possible utilization as magnetic vectors for targeted biomolecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  2. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673

    Article  Google Scholar 

  3. Prijic S, Sersa G (2011) Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 45:1–16

    Article  Google Scholar 

  4. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. doi:10.3390/molecules18077533

    Article  Google Scholar 

  5. Arruebo M, Fernandez-Pacheco R, Ibarra M (2007) Magnetic nanoparticles for drug delivery. Nanotoday 2:22–32

    Article  Google Scholar 

  6. Krukemever MG, Krenn V, Jakobs M, Wagner W (2012) Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen and liver-magnetic nanoparticles in cancer treatment. J Surg Res 175:35–43. doi:10.1016/j.jss.2011.01.060

    Article  Google Scholar 

  7. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Sa Loening, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperther 21:637–647. doi:10.1080/02656730500158360

    Article  Google Scholar 

  8. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81:53–60

    Article  Google Scholar 

  9. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Col Surf A 262:87–93

    Article  Google Scholar 

  10. Chen Q, Boothroyd C, Soutar AM, Zeng XT (2010) Sol–gel nanocoating on commercial TiO2 nanopowder using ultrasound. J Sol-Gel Sci Techn 53:115–120. doi:10.1007/s10971-009-2066-3

    Article  Google Scholar 

  11. Kobayashi Y, Nozawa T, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2010) Direct coating of quantum dots with silica shell. J Sol-Gel Sci Techn 55:79–85. doi:10.1007/s10971-010-2218-5

    Article  Google Scholar 

  12. Zhang JL, Kong JZ, Li AD, Gong YP, Guo HR, Yan QY, Wu D (2012) Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films. J Sol-Gel Sci Techn 64:269–275. doi:10.1007/s10971-010-2373-8

    Article  Google Scholar 

  13. Kobayashi Y, Saeki S, Yoshida M, Nagao D, Konno M (2008) Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. J Sol-Gel Sci Techn 45:35–41. doi:10.1007/s10971-007-1648-1

    Article  Google Scholar 

  14. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  15. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1:3402–5358

    Article  Google Scholar 

  16. Lei L, Ling-Ling J, Yun Z, Gang L (2013) Toxicity of superparamagnetic iron oxide nanoparticles: research strategies and implications for nanomedicine. Chinese Phys B 22:127503

    Article  Google Scholar 

  17. Sun Y, Duan L, Guo Z, DuanMu Y, Ma M, Xu L, Zhang Y, Gu N (2005) An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J Magn Magn Mater 285:65–70. doi:10.1016/j.jmmm.2004.07.016

    Article  Google Scholar 

  18. Zhang CW, Zeng CC, Xu Y (2014) Preparation and characterization of surface-functionalization of silica-coated magnetite nanoparticles for drug delivery. NANO 09:1450042. doi:10.1142/S1793292014500428

    Article  Google Scholar 

  19. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J, Hyeon T (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4:143–152. doi:10.1002/smll.200700456

    Article  Google Scholar 

  20. Yang D, Hu J, Fu S (2009) Controlled synthesis of magnetite–silica nanocomposites via a seeded sol–gel approach. J Phys Chem C 113:7646–7651. doi:10.1021/jp900868d

    Article  Google Scholar 

  21. Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR (2014) Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int 2014:705068. doi:10.1155/2014/705068

    Article  Google Scholar 

  22. Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486. doi:10.3390/molecules190811465

    Article  Google Scholar 

  23. Andrade AL, Souza DM, Pereira MC, Fabris JD, Domingues RZ (2009) Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 55:420–424

    Article  Google Scholar 

  24. Li D, Teoh WY, Woodward RC, Cashion JD, Selomulya C, Amal R (2009) Evolution of morphology and magnetic properties in silica/maghemite nanocomposites. J Phys Chem C 113:12040–12047. doi:10.1021/jp902684g

    Article  Google Scholar 

  25. Gu Y, Liu X, Niu T, Huang J (2010) Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres. Chem Commun 46:6096–6098. doi:10.1039/C0CC01440K

    Article  Google Scholar 

  26. Ortega D, García R, Marín R, Barrera-Solano C, Blanco E, Domínguez M, Ramírez-del-Solar M (2008) Maghemite–silica nanocomposites: sol–gel processing enhancement of the magneto-optical response. Nanotechnology 19:475706. doi:10.1088/0957-4484/19/47/475706

    Article  Google Scholar 

  27. Casula MF, Corrias A, Arosio P, Lascialfari A, Sen T, Floris P, Bruce IJ (2011) Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. J Colloid Interf Sci 357:50–55. doi:10.1016/j.jcis.2011.01.088

    Article  Google Scholar 

  28. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2:183–186. doi:10.1021/nl015681q

    Article  Google Scholar 

  29. Hajdú A, Tombácz E, Illés E, Bica D, Vékás L (2008) Magnetite nanoparticles stabilized under physiological conditions for biomedical application. Prog Coll Pol Sci S 135:29–37. doi:10.1007/2882_2008_11

    Google Scholar 

  30. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TRF, Silva KL, Damasceno IHM, Egito EST, Dantas AL, Morales MA, Carriço AS (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79. doi:10.1016/j.jmmm.2014.04.001

    Article  Google Scholar 

  31. Nadejde C, Puscasu E, Brinza F, Ursu L, Creanga D, Stan C (2015) Preparation of soft magnetic materials and characterization with investigation methods for fluid samples. U Politeh Buch Ser A 77:277–284

    Google Scholar 

  32. Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Lagmuir 23:4583–4588

    Article  Google Scholar 

  33. Hardiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang CY, Kuo CY, Chan TY, Zou HM, Lian WN, Lin CH (2014) Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res Lett 9:497. doi:10.1186/1556-276X-9-49

    Article  Google Scholar 

  34. Benelmekki M, Caparros C, Montras A, Gonçalves R, Lanceros-Mendez S, Martinez LM (2011) Horizontal low gradient magnetophoresis behaviour of iron oxide nanoclusters at the different steps of the synthesis route. J Nanopart Res 13:3199–3206. doi:10.1007/s11051-010-0218-6

    Article  Google Scholar 

  35. Vékás L, Bica D, Marinica O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58:257–267

    Google Scholar 

  36. Mohammad-Beigi H, Yaghmaei S, Roostaazad R, Bardania H, Arpanaei A (2011) Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, structural and surface properties of functionalized silica-coated iron oxide nanocomposite particles. Phys E 44:618–627. doi:10.1016/j.physe.2011.10.015

    Article  Google Scholar 

  37. Swanson HE, McMurdie HF, Morris MC, Evans EH (1967) Standard X-ray diffraction powder patterns. Government Printing Office, Washington

    Book  Google Scholar 

  38. Larumbe S, Gomez-Polo C, Perez-Landazabal JI, Pastor JM (2012) Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. J Phys Condens Matter 24:266007. doi:10.1088/0953-8984/24/26/266007

    Article  Google Scholar 

  39. Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J Biomed Sci Eng 5:715–719. doi:10.4236/jbise.2012.512089

    Article  Google Scholar 

  40. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgment

This research was supported by JINR Grant 57/04-4-1121-2015/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Creanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puscasu, E., Sacarescu, L., Lupu, N. et al. Iron oxide-silica nanocomposites yielded by chemical route and sol–gel method. J Sol-Gel Sci Technol 79, 457–465 (2016). https://doi.org/10.1007/s10971-016-3996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3996-1

Keywords

Navigation