Skip to main content
Log in

Improvement of uranium bioleaching from uranium embedded in granite using microwave pretreatment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We evaluated the effect of uranium bioleaching and mechanism by microwave pretreatment on uranium embedded in granite. The maximum uranium bioleaching ratio reached 93.1% after an ore sample was pretreated with microwave at 10 kW for 10 min, which was approximately 20% higher than untreated. After microwave pretreatment, the generation of micro-cracks can provide more adsorption sites for bacteria and promote contact between uranium-bearing minerals and leaching solution, a portion of the strongly bound uranium in the uranium ore was transformed into weakly bound uranium, and insoluble U(IV) into soluble U(VI), further improving uranium leaching ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xie H, Yu Y, Wang W, Liu Y (2017) The substitutability of non-fossil energy, potential carbon emission reduction and energy shadow prices in China. Energy Policy 107:63–71. https://doi.org/10.1016/j.enpol.2017.04.037

    Article  Google Scholar 

  2. Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50(1):70–75. https://doi.org/10.1007/s12088-010-0015-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi M-S, Cho K-S, Kim D-S, Ryu H-W (2005) Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 21(3):377–380. https://doi.org/10.1007/s11274-004-3627-9

    Article  CAS  Google Scholar 

  4. Tavakoli HZ, Abdollahy M, Ahmadi SJ, Darban AK (2017) Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Trans Nonferr Metals Soc China 27(12):2691–2703. https://doi.org/10.1016/S1003-6326(17)60298-X

    Article  CAS  Google Scholar 

  5. Zhou Z, Yang Z, Sun Z, Liu Y, Chen G, Liao Q, Xu L, Wang X, Li J, Zhou Y (2019) Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. J Radioanal Nucl Chem 321(2):711–722. https://doi.org/10.1007/s10967-019-06608-4

    Article  CAS  Google Scholar 

  6. Muddanna MH, Baral SS (2021) Bioleaching of rare earth elements from spent fluid catalytic cracking catalyst using Acidothiobacillus ferrooxidans. J Environ Chem Eng 9(1):104848. https://doi.org/10.1016/j.jece.2020.104848

    Article  CAS  Google Scholar 

  7. Potysz A, Pędziwiatr A, Hedwig S, Lenz M (2020) Bioleaching and toxicity of metallurgical wastes. J Environ Chem Eng 8(6):104450. https://doi.org/10.1016/j.jece.2020.104450

    Article  CAS  Google Scholar 

  8. Zhou Z, Yang Z, Sun Z, Chen G, Xu L, Liao Q (2019) Optimization of bioleaching high-fluorine and low-sulfur uranium ore by response surface method. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06712-5

    Article  Google Scholar 

  9. Umanskii A, Klyushnikov A (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295(1):151–156. https://doi.org/10.1007/s10967-012-1816-9

    Article  CAS  Google Scholar 

  10. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258. https://doi.org/10.1007/s10967-017-5406-8

    Article  CAS  Google Scholar 

  11. Kaksonen AH, Lakaniemi A-M, Tuovinen OH (2020) Acid and ferric sulfate bioleaching of uranium ores: a review. J Clean Prod 264:121586. https://doi.org/10.1016/j.jclepro.2020.121586

    Article  CAS  Google Scholar 

  12. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012) Insights into heap bioleaching of low grade chalcopyrite ores—A pilot scale study. Hydrometallurgy 125–126:157–165. https://doi.org/10.1016/j.hydromet.2012.06.006

    Article  CAS  Google Scholar 

  13. Petersen J (2016) Heap leaching as a key technology for recovery of values from low-grade ores – a brief overview. Hydrometallurgy 165:206–212. https://doi.org/10.1016/j.hydromet.2015.09.001

    Article  CAS  Google Scholar 

  14. Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour Technol 281:66–71. https://doi.org/10.1016/j.biortech.2019.02.065

    Article  CAS  PubMed  Google Scholar 

  15. Batchelor AR, Buttress AJ, Jones DA, Katrib J, Way D, Chenje T, Stoll D, Dodds C, Kingman SW (2017) Towards large scale microwave treatment of ores: part 2 – metallurgical testing. Miner Eng 111:5–24. https://doi.org/10.1016/j.mineng.2017.05.003

    Article  CAS  Google Scholar 

  16. Buttress AJ, Katrib J, Jones DA, Batchelor AR, Craig DA, Royal TA, Dodds C, Kingman SW (2017) Towards large scale microwave treatment of ores: part 1 – basis of design, construction and commissioning. Miner Eng 109:169–183. https://doi.org/10.1016/j.mineng.2017.03.006

    Article  CAS  Google Scholar 

  17. Zhao Y, Chen J (2008) Kinetics study on the dissolution of UO2 particles by microwave and conventional heating in 4 mol/L nitric acid. Sci China, Ser B: Chem 51(7):700–704. https://doi.org/10.1007/s11426-007-0128-3

    Article  CAS  Google Scholar 

  18. Le T, Ju S, Koppala S, Peng J, Pan B, Zhang L, Wang Q, Li X (2018) Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution. J Alloys Compd 749:652–663. https://doi.org/10.1016/j.jallcom.2018.03.323

    Article  CAS  Google Scholar 

  19. Madakkaruppan V, Pius A, T S, Giri N, Sarbajna C, (2016) Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. J Hazard Mater 313:9–17. https://doi.org/10.1016/j.jhazmat.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  20. Wei W, Shao Z, Zhang Y, Qiao R, Gao J (2019) Fundamentals and applications of microwave energy in rock and concrete processing – A review. Appl Therm Eng 157:113751. https://doi.org/10.1016/j.applthermaleng.2019.113751

    Article  Google Scholar 

  21. Al-Harahsheh M, Kingman SW (2004) Microwave-assisted leaching—a review. Hydrometallurgy 73(3):189–203. https://doi.org/10.1016/j.hydromet.2003.10.006

    Article  CAS  Google Scholar 

  22. Olubambi PA (2009) Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores. Hydrometallurgy 95(1):159–165. https://doi.org/10.1016/j.hydromet.2008.05.043

    Article  CAS  Google Scholar 

  23. Olubambi PA, Potgieter JH, Hwang JY, Ndlovu S (2007) Influence of microwave heating on the processing and dissolution behaviour of low-grade complex sulphide ores. Hydrometallurgy 89(1):127–135. https://doi.org/10.1016/j.hydromet.2007.07.010

    Article  CAS  Google Scholar 

  24. Zhong C, Xu C, Lyu R, Zhang Z, Wu X, Ra C (2018) Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment. J Rare Earths 36(2):215–224. https://doi.org/10.1016/j.jre.2017.08.007

    Article  CAS  Google Scholar 

  25. Yang Y, Yu Q, Hu N, Ding D (2016) Heap leaching uranium ore pretreated by microwave radiation. Chin J Rare Metals 40(3):280–286

    Google Scholar 

  26. Madakkaruppan V, Pius A, Sreenivas T, Sunilkumar TS (2019) Behaviour of Si, Al, Fe and Mg during oxidative sulfuric acid leaching of low grade uranium ore: a kinetic approach. J Environ Chem Eng 7(3):103139. https://doi.org/10.1016/j.jece.2019.103139

    Article  CAS  Google Scholar 

  27. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–850

    Article  CAS  Google Scholar 

  28. Ma Q, Feng ZG, Liu P, Lin XK, Li ZG, Chen MS (2016) Uranium speciation and in situ leaching of a sandstone-type deposit from China. J Radioanal Nucl Chem 311(3):2129–2134. https://doi.org/10.1007/s10967-016-5154-1

    Article  CAS  Google Scholar 

  29. Sun Y, Qi G, Lei X, Xu H, Wang Y (2016) Extraction of uranium in bottom ash derived from high-germanium coals. Proc Environ Sci 31:589–597. https://doi.org/10.1016/j.proenv.2016.02.096

    Article  CAS  Google Scholar 

  30. Peng Z, Hwang J-Y (2014) Microwave-assisted metallurgy. Int Mater Rev 60(1):34

    Google Scholar 

  31. Vorster W, Rowson NA, Kingman SW (2001) The effect of microwave radiation upon the processing of Neves Corvo copper ore. Int J Miner Process 63(1):29–44. https://doi.org/10.1016/S0301-7516(00)00069-7

    Article  CAS  Google Scholar 

  32. Schmuhl R, Smit JT, Marsh JH (2011) The influence of microwave pre-treatment of the leach behaviour of disseminated sulphide ore. Hydrometallurgy 108(3):157–164. https://doi.org/10.1016/j.hydromet.2011.04.001

    Article  CAS  Google Scholar 

  33. da Silva GR, Espiritu ERL, Mohammadi-Jam S, Waters KE (2018) Surface characterization of microwave-treated chalcopyrite. Colloids Surf A 555:407–417. https://doi.org/10.1016/j.colsurfa.2018.06.078

    Article  CAS  Google Scholar 

  34. Scott TB, Allen GC, Heard PJ, Randell MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69(24):5639–5646. https://doi.org/10.1016/j.gca.2005.07.003

    Article  CAS  Google Scholar 

  35. Feng Z, Xie H, Wang L, Deng S, Li J (2019) Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes. Ceram Int 45(14):16999–17005. https://doi.org/10.1016/j.ceramint.2019.05.249

    Article  CAS  Google Scholar 

  36. Ilankoon IMSK, Neethling SJ (2016) Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. Miner Eng 86:130–139. https://doi.org/10.1016/j.mineng.2015.12.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (52064001), the Natural Science Foundation of Jiangxi Province (20202BABL203022, 20202BABL213016, 20202ACBL213006), the Research Fund Program of Guangdong Key Laboratory of Radioactive and Rare Resource Utilization (2018B030322009), Project of State Key Laboratory of Nuclear Resources and Environment Fundamental Science (Z1602, Z1917), and the Development Fund of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (No. NRE1929).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegang Wang or Chao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liao, B., Nie, S. et al. Improvement of uranium bioleaching from uranium embedded in granite using microwave pretreatment. J Radioanal Nucl Chem 329, 913–922 (2021). https://doi.org/10.1007/s10967-021-07833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07833-6

Keywords

Navigation