Skip to main content
Log in

Effects of coprecipitation conditions on Cs+ removal, coprecipitate compositions and coprecipitate particle-size distribution in nickel potassium ferrocyanide systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Coprecipitation of Cs+ and nickel potassium ferrocyanide (KNiFC) is an important water treatment method for radioactive wastewater containing Cs+. In this study, the effects of coprecipitation experimental conditions on Cs+ removal rate, coprecipitates compositions and particle sizes distribution of coprecipitates are investigated completely with coprecipitation experiments and characterization analyses. Results show that removal rate of Cs+ increases with dose of flocculant. The corresponding relationships between coprecipitates compositions with coprecipitation conditions (including Ni(NO3)2:K4Fe(CN)6 ratio, initial concentration of Cs+ and presence of competitive cations) indicate that ion-exchange between Cs+ and K+ is the main mechanism of coprecipitation, and Mg is introduced into coprecipitates and significantly promoted by presence of Cs+. Furthermore, particle sizes of coprecipitates increases with Ni(NO3)2:K4Fe(CN)6 ratio, flocculant dose, initial concentration of Cs+ and acidity of coprecipitation system with different mechanisms. The coprecipitates particle sizes also increase  with the attend of Na+ and Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang JL, Zhuang ST (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol 18:231–269

    Article  CAS  Google Scholar 

  2. Nishizaki Y, Miyamae H, Ichikawa S, Izumiya K, Takano T, Kumagai N, Hashimoto K (2013) New technologier for decontamination of radioactive substances scattered by nuclear accident. Arch Metall Mater 58:283–290

    Article  CAS  Google Scholar 

  3. He YR, Yang Y, Huang ZY, Wang WJ, Li XL, Zhang PH, Tan ZY, Zhang D (2017) One-pot fabrication of ferric ferrocyanide functionalized graphene hydrogel for cesium removal in aqueous solution. RSC Adv 7:45085–45092

    Article  CAS  Google Scholar 

  4. Chen RZ, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Ishizaki M, Watanabe M, Arisaka M, Nankawa T (2013) Thermodynamics and mechanism studies on electrochemical removal of cesium ions from aqueous solution using a nanoparticle film of copper hexacyanoferrate. ACS Appl Mater Interfaces 5:12984–12990

    Article  CAS  Google Scholar 

  5. Lee I, Park CW, Yoon SS, Yang HM (2019) Facile synthesis of copper ferrocyanide-embedded magnetic hydrogel beads for the enhanced removal of cesium from water. Chemosphere 224:776–785

    Article  CAS  Google Scholar 

  6. Park Y, Kim C, Shin WS, June CS (2013) Sorptive removal of radionuclides (cobalt, strontium and cesium) using AMP/IO-PAN composites. J Nucl Fuel Cycle Waste Technol 11:259–269

    Article  Google Scholar 

  7. Bayulken S, Bascetin E, Guclu K, Apak R (2011) Investigation and modeling of cesium(I) adsorption by Turkish clays: bentonite, zeolite, sepiolite, and kaolinite. Environ Prog Sustain 30:70–80

    Article  Google Scholar 

  8. Jia F, Li JF, Wang JL, Sun YL (2017) Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system. Nucl Technol 197:219–224

    Article  Google Scholar 

  9. Liu C, Zhang DX, Zhao LT, Zhang P, Lu X, He SN (2016) Extraction property of p-tert-butylsulfonylcalix 4 arene possessing irradiation stability towards cesium(I) and strontium(II). Appl Sci-Basel 6:15

    Article  CAS  Google Scholar 

  10. Valsala TP, Sonavane MS, Kore SG, Sonar NL, De V, Raghavendra Y, Chattopadyaya S, Dani U, Kulkarni Y, Changrani RD (2011) Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products. J Hazard Mater 196:22–28

    Article  CAS  Google Scholar 

  11. Rahman ROA, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  12. Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    Article  CAS  Google Scholar 

  13. Yin YN, Wang JL, Yang XY, Li WH (2017) Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres. Nucl Eng Technol 49:172–177

    Article  Google Scholar 

  14. Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci 28:2479–2506

    Article  CAS  Google Scholar 

  15. Milyutin VV, Gelis VM, Klindukhov VG, Obruchikov AV (2004) Coprecipitation of microamounts of Cs with ferrocyanides of various metals. Radiochemistry 46:479–480

    Article  CAS  Google Scholar 

  16. Michel C, Barre Y, De Windt L, De Dieuleveult C, Brackx E, Grandjean A (2017) Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters. J Environ Chem Eng 5:810–817

    Article  CAS  Google Scholar 

  17. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240:59–67

    Article  CAS  Google Scholar 

  18. Matsumoto K, Yamato H, Kakimoto S, Yamashita T, Wada R, Tanaka Y, Akita M, Fujimura T (2018) A highly efficient adsorbent Cu-Perusian Blue@nanodiamond for cesium in diluted artificial seawater and soil-treated wastewater. Sci Rep 8:14

    Article  Google Scholar 

  19. Hitoshi M, Jukka L, Risto H (1997) Ion exchange of cesium on potassium nickel hexacyanoferrate (II)s. J Nucl Sci Technol 34:484–489

    Article  Google Scholar 

  20. Michel C, Barre Y, de Dieuleveult C, Grandjean A, De Windt L (2015) Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support. Chem Eng Sci 137:904–913

    Article  CAS  Google Scholar 

  21. Rao S, Paul B, Lal KB, Narasimhan SV, Ahmed J (2000) Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration. J Radioanal Nucl Chem 246:413–418

    Article  CAS  Google Scholar 

  22. Sharygin L, Muromskiy A, Kalyagina M, Borovkov S (2007) A granular inorganic cation-exchanger selective to cesium. J Nucl Sci Technol 44:767–773

    Article  CAS  Google Scholar 

  23. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1998) Preparation, characterization, and utilization of potassium nickel hexacyanoferrate for the separation of cesium and cobalt from contaminated waste water. J Radioanal Nucl Chem 237:97–103

    Article  CAS  Google Scholar 

  24. Du ZH, Jia MC, Wang XW (2013) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. J Radioanal Nucl Chem 298:167–177

    Article  CAS  Google Scholar 

  25. Denton MS, Mertz JL, Bostick WD (2011) Readily available experience, technologies, media, modular equipment and rapid deployment during a nuclear crisis. In: Paper presented at: the 10th international conference GLOBAL 2011 toward and over the Fukushima Daiichi accident Proceedings, Japan

  26. Lei D, Nie M, Cao Y, Zuo W, Tian X, Zhao Z, Li Q (2018) Properties of AuPdPt-WC/C nanocomposite catalyst in simulated seawater solution for hydrogen evolution. Mater Res Innov 22:183–186

    Article  CAS  Google Scholar 

  27. Yin XB, Wu Y, Mimura H, Niibori Y, Wei YZ (2014) Selective adsorption and stable solidification of radioactive cesium ions by porous silica gels loaded with insoluble ferrocyanides. Sci China Chem 57:1470–1476

    Article  CAS  Google Scholar 

  28. Srinivas C, Tirupanyam BV, Meena SS, Yusuf SM, SeshuBabu C, Ramakrishna KS, Potukuchi DM, Sastry DL (2016) Structural and magnetic characterization of co-precipitated NixZn1−xFe2O4 ferrite nanoparticles. J Magn Magn Mater 407:135–141

    Article  CAS  Google Scholar 

  29. Berg C, Engqvist H, Xia W (2019) Ion substitution induced formation of spherical ceramic particles. Ceram Int 45:10385–10393

    Article  CAS  Google Scholar 

  30. Hikichi N, Iyoki K, Naraki Y, Yanaba Y, Ohara K, Okubo T, Wakihara T (2019) Role of sodium cation during aging process in the synthesis of LEV-type zeolite. Microporous Mesoporous Mater 284:82–89

    Article  CAS  Google Scholar 

  31. Iwama M, Suzuki Y, Plevert J, Itabashi K, Ogura M, Okubo T (2010) Location of alkali ions and their relevance to crystallization of low silica X zeolite. Cryst Growth Des 10:3471–3479

    Article  CAS  Google Scholar 

  32. Gupta SK, Garcia MAP, Zuniga JP, Mao YB (2020) pH induced size tuning of Gd2Hf2O7:Eu3+ nanoparticles and its effect on their UV and X-ray excited luminescence. J Lumin 228:9

    Article  Google Scholar 

  33. Hong SK, Lee SH, An YT, Ji MJ, Park SE, Lee MJ, Hwang HJ, Choi BH (2015) Behavior of precipitation and morphological, structural properties during the synthesis of spherical Ni and Ni0.95M0.05(M = Cu, Cr, Co, Fe) nano-particles. Met Mater Int 21:1074–1080

    Article  CAS  Google Scholar 

  34. Verma S, Mohanty BP, Singh KP, Behera BR, Kumar A (2018) Dependence of precipitation of trace elements on pH in standard water. Nucl Instrum Methods B 420:18–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (21771045, U1967219), the project of Young Talents of China National Nuclear Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or Yaorui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Wang, G., Wang, J. et al. Effects of coprecipitation conditions on Cs+ removal, coprecipitate compositions and coprecipitate particle-size distribution in nickel potassium ferrocyanide systems. J Radioanal Nucl Chem 330, 293–303 (2021). https://doi.org/10.1007/s10967-021-07961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07961-z

Keywords

Navigation