Skip to main content
Log in

Removal of cesium from simulated wastewater by continuous coprecipitation flotation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Metal potassium ferrocyanide (KMFC) has been widely used for the removal of cesium from wastewater. Coprecipitation flotation is an efficient treatment method, but the related research is insufficient. In this study, the removal rates of Cs+ by KMFC with Ni2+, Cu2+, Co2+, and Cd2+ are investigated. The continuous coprecipitation flotation experiments are carried out in a self-designed apparatus with KNiFC, and the effects of coprecipitation flotation conditions on the removal of Cs+ are investigated. The results show that the KMFCs with different divalent metals have the similar Cs+ removal performance. The coprecipitation flotation factors affect removal of Cs+ through different mechanisms. Under the optimal treatment conditions, 97.8% Cs+ is removed after 8 h operation with the apparatus. It provides experimental and theoretical basis for the removal of Cs+ with this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Du Z, Jia M, Wang X (2012) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. J Radioanal Nucl Chem 298:167–177

    Google Scholar 

  2. Hwang J, Yang HM, Lee KW, Jung YI, Lee KJ, Park CW (2019) A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water. J Hazard Mater 369:416–422

    CAS  PubMed  Google Scholar 

  3. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149

    CAS  PubMed  Google Scholar 

  4. Vincent T, Vincent C, Guibal E (2015) Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the synthesis of Metal Ion Sorbents–A Mini-Review. Molecules 20:20582–20613

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wi H, Kim H, Oh D, Bae S, Hwang Y (2019) Surface modification of poly(vinyl alcohol) sponge by acrylic acid to immobilize prussian blue for selective adsorption of aqueous cesium. Chemosphere 226:173–182

    CAS  PubMed  Google Scholar 

  6. Rao S, Paul B, Lal KB, Narasimhan SV, Ahmed J (2000) Effective removal of Cesium and Strontium from Radioactive Wastes using Chemical Treatment followed by Ultra Filtration. J Radioanal Nucl Chem 246:413–418

    CAS  Google Scholar 

  7. Shakir K, Ghoneimy HF, Beheir SG, Refaat M (2007) Flotation of Cesium Coprecipitated with Nickel Hexacyanoferrate(II) from Aqueous Solutions and Radioactive Waste Simulants. Sep Sci Technol 42:1341–1365

    CAS  Google Scholar 

  8. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN (2001) The Universal Solvent extraction (unex) process. I. Development of the Unex process solvent for the separation of Cesium, Strontium, and the Actinides from Acidic Radioactive Waste. Solvent Extr Ion Exch 19:1–21

    CAS  Google Scholar 

  9. Jin X, Huang L, Yu S, Ye M, Yuan J, Shen J, Fang K, Weng X (2019) Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Sep Purif Technol 209:65–72

    CAS  Google Scholar 

  10. Ding S, Zhang L, Li Y, Hou LA (2019) Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J Hazard Mater 368:292–299

    CAS  PubMed  Google Scholar 

  11. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of cs + and Sr2 + ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    CAS  PubMed  Google Scholar 

  12. Hwang KS, Park CW, Lee K-W, Park S-J, Yang H-M (2017) Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloids Surf A 516:375–382

    CAS  Google Scholar 

  13. Milyutin VV, Gelis VM, Klindukhov VG, Obruchikov AV (2004) Coprecipitation of microamounts of cs with ferrocyanides of various metals. Radiochemistry 46:479–480

    CAS  Google Scholar 

  14. Ahali Abadeh Z, Irannajad M (2017) Removal of Ni and Cd ions from aqueous solution using iron dust-zeolite composite: analysis by thermodynamic, kinetic and isotherm studies. Chem Res Chin Univ 33:318–326

    Google Scholar 

  15. Yu X, Wu W, Zhou D, Su D, Zhong Z, Yang C (2022) Bisindole [3]arenes—Indolyl Macrocyclic Arenes having significant iodine capture Capacity. CCS Chem 4:1806–1814

    CAS  Google Scholar 

  16. Zhang C-R, Cui W-R, Xu R-H, Chen X-R, Jiang W, Wu Y-D, Yan R-H, Liang R-P, Qiu J-D (2021) Alkynyl-Based sp2 Carbon-Conjugated Covalent Organic Frameworks with enhanced uranium extraction from seawater by Photoinduced multiple Effects. CCS Chem 3:168–179

    CAS  Google Scholar 

  17. Vincent T, Vincent C, Barré Y, Guari Y, Le Saout G, Guibal E (2014) Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J Mater Chem A 2:10007–10019

    CAS  Google Scholar 

  18. Kulyukhin SA, Kulemin VV, Krasavina EP, Rumer IA, Krapukhin VB, Gorbacheva MP (2018) Recovery of 60Co and 137Cs with various solid phases from aqueous solutions of different chemical composition. J Radioanal Nucl Chem 316:869–884

    CAS  Google Scholar 

  19. Wang J, Zhuang S, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438

    CAS  Google Scholar 

  20. Milyutin VV, Gelis VM (2011) Optimal conditions for coprecipitation of cesium radionuclides with nickel ferrocyanide. Radiochemistry 50:64–66

    Google Scholar 

  21. Mahmoud MR, Lazaridis NK (2015) Simultaneous removal of Nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep Sci Technol 50:1421–1432

    CAS  Google Scholar 

  22. Mahmoud MR, Lazaridis NK, Matis KA (2015) Study of flotation conditions for cadmium(II) removal from aqueous solutions. Process Saf Environ Prot 94:203–211

    CAS  Google Scholar 

  23. Zhang M, Cao Y, Peng B, Tian Y, Barvor JB (2020) Removal of copper cyanide by precipitate flotation with ammonium salts. Process Saf Environ Prot 133:82–87

    CAS  Google Scholar 

  24. Matsuoka K, Miura H, Karima S, Taketaka C, Ouno S, Moroi Y (2018) Removal of alkali metal ions from aqueous solution by foam separation method. J Mol Liq 263:89–95

    CAS  Google Scholar 

  25. Salmani Abyaneh A, Fazaelipoor MH (2016) Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J Environ Manage 165:184–187

    CAS  PubMed  Google Scholar 

  26. Shakir K, Sohsah M, Soliman M (2007) Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation. Sep Purif Technol 54:373–381

    CAS  Google Scholar 

  27. Rashad GM, Mahmoud MR, Soliman MA (2019) Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems. Process Saf Environ Prot 130:163–173

    CAS  Google Scholar 

  28. Soliman MA, Rashad GM, Mahmoud MR (2015) Fast and efficient cesium removal from simulated radioactive liquid waste by an isotope dilution–precipitate flotation process. Chem Eng J 275:342–350

    CAS  Google Scholar 

  29. Denton MS, Mertz JL, Bostick WD (2011) Readily available experience, technologies, media, modular equipment and rapid deployment during a nuclear crisis. In: Global Conference-japan

  30. Lei D, Nie M, Cao Y, Zuo W, Tian X, Zhao Z, Li Q (2018) Properties of AuPdPt-WC/C nanocomposite catalyst in simulated seawater solution for hydrogen evolution. Mater Res Innovations 22:183–186

    CAS  Google Scholar 

  31. Jiao C, Wang G, Wang J, Gao Y, Hou H, Zhang M, Li Y (2021) Effects of coprecipitation conditions on cs + removal, coprecipitate compositions and coprecipitate particle-size distribution in nickel potassium ferrocyanide systems. J Radioanal Nucl Chem 330:293–303

    CAS  Google Scholar 

  32. Milyutin VV, Gelis VM, Ershov BG, Seliverstov AF (2011) Effect of complexing agents and surfactants on coprecipitation of cesium radionuclides with nickel ferrocyanide. Radiochemistry 50:67–69

    Google Scholar 

  33. Zhuang S, Wang J (2019) Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent.J Mol Liq294

  34. Chang C-Y, Chau L-K, Hu W-P, Wang C-Y, Liao J-H (2008) Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mater 109:505–512

    CAS  Google Scholar 

  35. Yuan XZ, Meng YT, Zeng GM, Fang YY, Shi JG (2008) Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf A 317:256–261

    CAS  Google Scholar 

  36. Mahmoud MR, Soliman MA, Rashad GM (2017) Performance appraisal of foam separation technology for removal of Co(II)-EDTA complexes intercalated into in-situ formed Mg-Al layered double hydroxide from radioactive liquid waste. Chem Eng J 326:781–793

    CAS  Google Scholar 

  37. Hoseinian FS, Rezai B, Kowsari E (2018) Effect of separation mechanism on the kinetics of zn(II) flotation. Sep Sci Technol 53:2833–2839

    CAS  Google Scholar 

  38. Peng W, Han G, Cao Y, Sun K, Song S (2018) Efficiently removing pb(II) from wastewater by graphene oxide using foam flotation. Colloids Surf A 556:266–272

    CAS  Google Scholar 

  39. Shakir K, Elkafrawy AF, Ghoneimy HF, Elrab Beheir SG, Refaat M (2010) Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Res 44:1449–1461

    CAS  PubMed  Google Scholar 

  40. Hoseinian FS, Rezai B, Safari M, Deglon D, Kowsari E (2019) Effect of hydrodynamic parameters on nickel removal rate from wastewater by ion flotation. J Environ Manage 244:408–414

    CAS  PubMed  Google Scholar 

  41. Zouboulis AI, Matis KA, Stalidis GA (1990) Parameters influencing flotation in removal of metal ions. Int J Environ Stud 35:183–196

    CAS  Google Scholar 

  42. Ghazy S, El-Morsy S, Ragab A (2008) Ion flotation of copper (II) and lead (II) from environmental water samples. J Appl Sci Environ Manage 12:75–82

    Google Scholar 

  43. Stoica L, Stanescu A-M, Constantin C, Oprea O, Bacioiu G (2015) Removal of copper(II) from Aqueous Solutions by Biosorption-Flotation. Water Air Soil Pollut 226:274

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (21771045, U1967219), the project of Young Talents of China National Nuclear Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaorui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Wang, J., Wang, G. et al. Removal of cesium from simulated wastewater by continuous coprecipitation flotation. J Radioanal Nucl Chem 332, 887–895 (2023). https://doi.org/10.1007/s10967-022-08672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08672-9

Keywords

Navigation