Skip to main content
Log in

Luminescent versus non-luminescent uranyl–picolinate complexes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Luminescence of uranyl ion (UO22+) complexed with picolinate (PA) has been studied in aqueous and acetonitrile medium. In aqueous medium, for UO22+ to PA ratio of up to 1:20, a 1:1 non-luminescent specie with stability constant of log β = 3.88 was formed. On the contrary, formed specie in acetonitrile medium was luminescent and the enhanced luminescence was due to sensitization by PA and reduction in non-radiative decay channels. UV–Vis absorption spectroscopy studies revealed that the luminescent specie was 1:2 type complex. Density functional theory and DLPNO-CCSD(T) methodologies were applied to arrive at the lowest-energy structures of the 1:1 and 1:2 uranyl–picolinate complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coord Chem Rev 250:816–843

    Article  CAS  Google Scholar 

  2. Beitz JV, Williams CW (1997) Uranyl fluoride luminescence in acidic aqueous solutions. J Alloys Compd 250:375–379

    Article  CAS  Google Scholar 

  3. Moll H, Geipel G, Reich T, Bernhard G, Fanghänel T, Grenthe I (2003) Uranyl (VI) complexes with alpha-substituted carboxylic acids in aqueous solution. Radiochim Acta 91:11–20

    Article  CAS  Google Scholar 

  4. Moll H, Geipel G, Brendler V, Bernhard G, Nitsche H (1998) Interaction of uranium (VI) with silicic acid in aqueous solutions studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J Alloys Compd 271–273:765–768

    Article  Google Scholar 

  5. Fazekas Z, Yamamura T, Tomiyasu H (1998) Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes. J Alloys Compd 271–273:756–759

    Article  Google Scholar 

  6. Singh H, Mishra SL, Vijayalakshmi R (2004) Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 73:63–70

    Article  CAS  Google Scholar 

  7. Singh DK, Singh H (2008) Recovery of oxalate from scrubbing solution containing rare earths and iron produced during uranium recovery from phosphoric acid. Desalination 232:37–48

    Article  CAS  Google Scholar 

  8. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Vasudeva Rao PR (2008) Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electro deposition from organic phase. J Alloys Compd 448:104–108

    Article  CAS  Google Scholar 

  9. Sachs S, Brendler V, Geipel G (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochim Acta 95:103–110

    Article  CAS  Google Scholar 

  10. Raditzky B, Schmeide K, Sachs S, Geipel G, Bernhard G (2010) Interaction of uranium(VI) with nitrogen containing model ligands studied by laser-induced fluorescence spectroscopy. Polyhedron 29:620–626

    Article  CAS  Google Scholar 

  11. Glorius M, Moll H, Bernhard G (2007) Complexation of uranium(VI) with aromatic acids in aqueous solution: a comparison of hydroxamic acids and benzoic acid. Radiochim Acta 95:151–157

    Article  CAS  Google Scholar 

  12. Verma PK, Mohapatra PK, Bhattacharyya A, Yadav AK, Jha SN, Bhattacharyya D (2018) Structural investigations on uranium(VI) and thorium(IV) complexation with TBP and DHOA: a spectroscopic study. New J Chem 42:5243–5255

    Article  CAS  Google Scholar 

  13. Servaes K, Hennig C, Billard I, Gaillard C, Binnemans K, Walrand CG, Deun RV (2007) Speciation of uranyl nitrato complexes in acetonitrile and in the ionic liquid 1-butyl-3 methylimidazolium bis(trifluoromethylsulfonyl)imide. Eur J Inorg Chem 32:5120–5126

    Article  Google Scholar 

  14. Walrand CG, Houwer SD, Fluyt L, Binnemans K (2004) Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Phys Chem Chem Phys 6:3292–3298

    Article  Google Scholar 

  15. Moulin C, Laszak I, Moulin V, Tondre C (1998) Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation. Appl Spectrosc 52:528–535

    Article  CAS  Google Scholar 

  16. Redmond MP, Cornet SM, Woodall SD, Whittaker D, Collison D, Helliwell M, Natrajan LS (2011) Probing the local coordination environment and nuclearity of uranyl(VI) complexes in non-aqueous media by emission spectroscopy. Dalton Trans 40:3914–3926

    Article  CAS  Google Scholar 

  17. Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I (1995) Characterisation of hydroxide complexes of uranium(VI) by time-resolved fluorescence spectroscopy. J Chem Soc, Faraday Trans 91:2275–2285

    Article  Google Scholar 

  18. Reitz T, Rossberg A, Barkleit A, Steudtner R, Pobell SS, Merroun ML (2015) Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. Dalton Trans 44:2684–2692

    Article  CAS  Google Scholar 

  19. Gunther A, Steutdner R, Schmeide K, Bernhard G (2011) Luminescence properties of uranium(VI) citrate and uranium(VI) oxalate species and their application in the determination of complex formation constants. Radiochim Acta 99:535–542

    Article  Google Scholar 

  20. Steutdner R, Arnold T, Geipel G, Bernhard G (2010) Fluorescence spectroscopic study on complexation of uranium(VI) by glucose: a comparison of room and low temperature measurements. J Radioanal Nucl Chem 284:421–429

    Article  Google Scholar 

  21. Servaes K, Houwer SD, Walrand CG, Binnemans K (2004) Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. Phys Chem Chem Phys 6:2946–2950

    Article  CAS  Google Scholar 

  22. Nockemann P, Deun RV, Thijs B, Huys D, Vanecht E, Hecke KV, Meervelt LV, Binnemans K (2010) Uranyl complexes of carboxyl-functionalized ionic liquids. Inorg Chem 49:3351–3360

    Article  CAS  Google Scholar 

  23. Nockemann P, Servaes K, Deun RV, Hecke KV, Meervelt LV, Binnemans K, Walrand CG (2007) Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg Chem 46:11335–11344

    Article  CAS  Google Scholar 

  24. Kumar S, Maji S, Sundararajan K, Sankaran K (2018) Uranyl tris nitrato as a luminescent probe for trace water detection in acetonitrile. Luminescence 33:611–615

    Article  CAS  Google Scholar 

  25. Maji S, Kumar S, Sankaran K (2017) Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence. Radiochim Acta 105(8):601–608

    Article  CAS  Google Scholar 

  26. Kumar S, Maji S, Joseph M, Sankaran K (2015) Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate species. Spectrochim Acta A 138:506–516

    Google Scholar 

  27. Lütke L, Moll H, Bernhard G (2012) A new uranyl benzoate species characterized by different spectroscopic techniques. Radiochim Acta 100:297–303

    Article  Google Scholar 

  28. Kumar S, Maji S, Joseph M, Sankaran K (2015) Spectroscopic investigation of europium benzoate in acetonitrile: luminescence enhancement and complexation studies. J Lumin 161:123–128

    Article  CAS  Google Scholar 

  29. Wang ZM, Van de Burgt LJ, Choppin GR (1999) Spectroscopic study of lanthanide(III) complexes with carboxylic acids. Inorg Chim Acta 293:167–177

    Article  CAS  Google Scholar 

  30. Zhen XS, Wei X, Yue QZ (2016) Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer. J Solid State Chem 239:139–144

    Article  Google Scholar 

  31. Alexandropoulos DI, Mazarakioti EC, Corrales SA, Bryant JT, Gasparov LV, Lampropoulos C, Stamatatos TC (2017) New ligands for uranium complexation: a stable uranyl dimer bearing 2,6-diacetylpyridine dioxime. Inorg Chem Commun 78:13–16

    Article  CAS  Google Scholar 

  32. Xiaomin H, Tang SF (2017) A new uranyl triphosphonate constructed from semi-rigid triphosphonate ligand: new method for the construction of higher dimensional uranyl phosponates. J Mol Struct 1146:39–42

    Article  Google Scholar 

  33. Maji S, Kumar S, Sundararajan K, Sankaran K (2018) A novel luminescence method for the estimation of uranyl ions using trimesic acid-cadmium complex. Microchem J 140:207–213

    Article  CAS  Google Scholar 

  34. Severance RC, Vaughn SA, Smith MD, Loye HC (2011) Structures and luminescent properties of new uranyl-based hybrid materials. Solid State Sci 13:1344–1353

    Article  CAS  Google Scholar 

  35. Shepherd ND, Zhang Y, Karatchevtseva I, Price JR, Kong L, Scales N, Lumpkin GR (2016) One-dimensional uranium(VI) coordination polymers with pyridinecarboxylate ligands. Polyhedron 113:88–95

    Article  CAS  Google Scholar 

  36. Szabo Z, Aas W, Grenthe I (1997) Structure, isomerism, and ligand dynamics in dioxouranium(VI) complexes. Inorg Chem 36:5369–5375

    Article  CAS  Google Scholar 

  37. Becke AD (1998) Density functional exchange energy approximation with correct asymptotic behaviour. Phys Rev A: At, Mol, Opt Phys 38(6):3098–3100

    Article  Google Scholar 

  38. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B: Condens Matter Mater Phys 33(12):8822–8824

    Article  CAS  Google Scholar 

  39. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  41. Van LE, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792

    Article  Google Scholar 

  42. Van LE, Snijders JG, Baerends EJ (1996) The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J Chem Phys 105:6505–6516

    Article  Google Scholar 

  43. Pantazis DA, Neese F (2011) All-electron scalar relativistic basis setes for actinides. J Chem Theor Comput 7(3):677–684

    Article  CAS  Google Scholar 

  44. Weigend FA (2002) A fully direct RI-HF algorithm: implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. Phys Chem Chem Phys 4:4285–4291

    Article  CAS  Google Scholar 

  45. Weigend FA, Kohn A, Hättig C (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  47. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  48. Riplinger C, Neese F (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 138:034106

    Article  Google Scholar 

  49. Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J Chem Phys 139:134101

    Article  Google Scholar 

  50. Minenkov Y, Chermak E, Cavallo L (2015) Accuracy of DLPNO–CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes. J Chem Theory Comput 11(10):4664–4676

    Article  CAS  Google Scholar 

  51. Liakos DG, Sparta M, Kesharwani MK, Martin JML, Neese F (2015) Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J Chem Theory Comput 11:1525–1539

    Article  CAS  Google Scholar 

  52. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev: Comput Mol Sci 2:73–78

    CAS  Google Scholar 

  53. Moulin C, Decambox P (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67:348–353

    Article  CAS  Google Scholar 

  54. Mohana Rao DR, Rawat N, Sawant RM, Manna D, Ghanty TK, Tomar BS (2012) Thermodynamic study of Eu(III) complexation by pyridine monocarboxylates. J Chem Thermodyn 55:67–74

    Article  Google Scholar 

  55. Bismondo A, Rizzo L (1987) Uranyl(VI) complexes of 3-arninopropanoic acid and 4-aminobutanoic acid in aqueous solution: a potentiornetric and calorimetric study. J Chem Soc, Dalton Trans 4:695–697

    Article  Google Scholar 

  56. Yang Y, Teat SJ, Zhang Z, Luo S, Rao L (2016) Complexation of U(VI) with benzoic acid at variable temperatures (298–353 K): thermodynamics and crystal structures of U(VI)/benzoate complexes. Dalton Trans 45:384–391

    Article  Google Scholar 

  57. Maji S, Viswanathan KS (2011) Enhancement of uranyl fluorescence using trimesic acid: ligand sensitization and co-fluorescence. J Lumin 131:1848–1852

    Article  CAS  Google Scholar 

  58. Brachmann A, Geipel G, Bernhard G, Nitsche H (2002) Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 90:147–153

    Article  CAS  Google Scholar 

  59. Maji S, Viswanathan KS (2009) Sensitization of uranium fluorescence using 2,6 pyridinedicarboxylic acid: application for the determination of uranium in the presence of lanthanides. J Lumin 129:1242–1248

    Article  CAS  Google Scholar 

  60. Alcock NW, Flanders DJ, Kemp TJ, Shand MA (1985) Glycine complexation with uranyl ion: absorptiometric, luminescence, and X-ray structural studies of tetrakis(glycine)dioxouranium(VI) nitrate. J Chem Soc, Dalton Trans 3:517–521

    Article  Google Scholar 

  61. Lakowicz JR (2006) Principle of fluorescence spectroscopy, 3rd edn. Berlin, Springer

    Book  Google Scholar 

  62. Bouby M, Billard I, Bonnenfant A, Klein G (1999) Are the changes in the lifetime of the excited uranyl ion of chemical or physical nature? Chem Phys 240:353–370

    Article  CAS  Google Scholar 

  63. Houwer SD, Walrend CG (2001) Influence of complex formation on the electronic structure of uranyl. J Alloys Compd 323–324:683–687

    Article  Google Scholar 

  64. Dieke GH, Duncan ABF (1965) Spectroscopic Properties of Uranium Compounds. McGraw Hill, New York

    Google Scholar 

  65. Budantseva NA, Andreev GB, Fedoseev AM, Antipin MY, Krupa JC (2006) Interaction of neptunium(V) with picolinic, nicotinic and isonicotinic acids. Radiochim Acta 94:69–74

    Article  CAS  Google Scholar 

  66. Alyapyshev M, Babain V, Tkachenko L, Gurzhiy V, Zolotarev A, Ustynyuk Y, Gloriozov I, Lumpov A, Dar’in D, Paulenova A (2017) Complexes of uranyl nitrate with 2,6-pyridinedicarboxamides: synthesis, crystal structure and DFT study. Z Anorg Allg Chem 643:585–592

    Article  CAS  Google Scholar 

  67. Gopakumar G, Sreenivasulu B, Suresh A, Brahmmananda Rao CVS, Sivaraman N, Joseph M, Anoop A (2016) Complexation behaviour of the Tri-n-butyl phosphate ligand with Pu(IV) and Zr(IV): a computational study. J Phys Chem A 120:4201–4210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sankaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Maji, S., Gopakumar, G. et al. Luminescent versus non-luminescent uranyl–picolinate complexes. J Radioanal Nucl Chem 318, 2145–2156 (2018). https://doi.org/10.1007/s10967-018-6305-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6305-3

Keywords

Navigation