Skip to main content
Log in

Uranyl Luminescence Quenching in the Presence of Organic Reagents Based on 2,2'-Bipyridyldicarboxylic Acid

  • OPTICS AND SPECTROSCOPY. LASER PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The absorption and luminescence spectra and the luminescence decay kinetics of uranyl ions (UO22+) in the presence of organic reagents based on 2,2'-bipyridyldicarboxamides with various substituents have been studied. The quantum yields and luminescence lifetimes of uranyl nitrate hexahydrate and uranyl complexes with organic ligands in acetonitrile solutions have been determined. The mechanism of energy transfer in uranyl complexes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Moll, M. Schmidt, and S. Sachs, J. Hazard. Mater. 412, 125251 (2021). https://doi.org/10.1016/j.jhazmat.2021.125251

    Article  Google Scholar 

  2. L. Wang, W. Xu, W.-Y. Li, et al., Chem. Asian J. 14, 4246 (2019). https://doi.org/10.1002/asia.201901124

    Article  Google Scholar 

  3. L. Götzke, G. Schaper, J. März, et al., Coord. Chem. Rev. 386, 267 (2019). https://doi.org/10.1016/j.ccr.2019.01.006

    Article  Google Scholar 

  4. N. E. Borisova, A. V. Kharcheva, V. A. Andronov, et al., Mendeleev Commun. 28, 284 (2018). https://doi.org/10.1016/j.mencom.2018.05.018

    Article  Google Scholar 

  5. B. R. Sculimbrene and B. Imperiali, J. Am. Chem. Soc. 128, 7346 (2006). https://doi.org/10.1021/ja061188a

    Article  Google Scholar 

  6. J. Su, K. Zhang, W. H. E. Schwarz, and J. Li, Inorg. Chem. 50, 2082 (2011). https://doi.org/10.1021/ic200204p

    Article  Google Scholar 

  7. A. V. Kharcheva, N. E. Borisova, A. V. Ivanov, et al., Russ. J. Inorg. Chem. 63, 219 (2018). https://doi.org/10.1134/S0036023618020092

    Article  Google Scholar 

  8. A. Bhattacharyya, A. Leoncini, R. J. M. Egberink, et al., Inorg. Chem. 57, 12987 (2018). https://doi.org/10.1021/acs.inorgchem.8b02255

    Article  Google Scholar 

  9. X. Wang, H. Chang, J. Xie, et al., Coord. Chem. Rev. 273–274, 201 (2014). https://doi.org/10.1016/j.ccr.2014.02.001

    Article  Google Scholar 

  10. L. J. Nugent, J. L. Burnett, R. D. Baybarz, et al., J. Phys. Chem. 73, 1540 (1969). https://doi.org/10.1021/j100725a060

    Article  Google Scholar 

  11. Z. Assefa, T. Yaita, R. G. Haire, and S. S. Tachimori, J. Solid State Chem. 178, 505 (2005). https://doi.org/10.1016/j.issc.2004.09.017

    Article  ADS  Google Scholar 

  12. A. V. Kharcheva, K. S. Nikolskiy, N. E. Borisova, et al., Proc. SPIE 9917, 99172J (2016). https://doi.org/10.1117/12.2229849

    Article  Google Scholar 

  13. S. Lis, M. Elbanowski, B. M, and Z. Hnatejko, J. Photochem. Photobiol. A 150, 233 (2002). https://doi.org/10.1016/S1010-6030(01)00637-2

    Article  Google Scholar 

  14. T. Arnold, N. Baumann, E. Krawczyk-Bärsch, et al., Geochim. Cosmochim. Acta 75, 2200 (2011). https://doi.org/10.1016/j/gca/2011/01/037

    Article  ADS  Google Scholar 

  15. C. C. May, P. J. Worsfold, and M. J. Keith-Roach, Trends Anal. Chem. 27, 160 (2008). https://doi.org/10.1016/j.trac.2007.11.007

    Article  Google Scholar 

  16. L. Wang, B. Tu, W. Xu, et al., Inorg. Chem. 59, 5004 (2020). https://doi.org/10.1021/acs.inorgchem.0c00236

    Article  Google Scholar 

  17. S. G. Thangavelu, S. J. A. Pope, and C. L. Cahill, Cryst. Eng. Comm. 17, 6236 (2015). https://doi.org/10.1039/c5ce00984g

    Article  Google Scholar 

  18. N. E. Borisova, A. V. Kharcheva, S. V. Patsaeva, et al., Dalton Trans. 46, 2238 (2017). https://doi.org/10.1039/c6dt04681a

    Article  Google Scholar 

  19. Z. Cai, C. Wei, B. Sun, et al., Inorg. Chem Front. 8, 41 (2021). https://doi.org/10.1039/d0qi00894j

    Article  Google Scholar 

  20. R. Ilmi and K. Iftikhar, Polyhedron 102, 16 (2015). https://doi.org/10.1016/j.poly.2015.07.046

    Article  Google Scholar 

  21. S. G. Thangavelu, M. B. Andrews, S. J. A. Pope, and C. L. Cahil, Inorg. Chem. 52, 2060 (2013). https://doi.org/10.1021/ic3024698

    Article  Google Scholar 

  22. H. C. Hardwick, D. S. Royal, M. Helliwell, et al., Dalton Trans. 40, 5939 (2011). https://doi.org/10.1039/c0dt01580f

    Article  Google Scholar 

  23. N. E. Borisova, A. A. Kostin, E. A. Eroshkina, et al., Eur. J. Inorg. Chem. 2014, 2219 (2014). https://doi.org/10.1002/ejic.201301271

    Article  Google Scholar 

  24. N. E. Borisova, T. B. Sumyanova, A. V. Kharcheva, et al., Dalton Trans. 47, 16755 (2018). https://doi.org/10.1039/C8DT03734E

    Article  Google Scholar 

  25. A. S. Milyukov, S. V. Patsaeva, V. I. Yuzhakov, et al., Moscow Univ. Phys. Bull. 62, 368 (2007). https://doi.org/10.3103/S0027134907060082

    Article  ADS  Google Scholar 

  26. T. N. Filippov, P. A. Kolin’ko, D. V. Kozlov, et al., Kinet. Catal. 57, 191 (2016). https://doi.org/10.1134/S0023158416020026

    Article  Google Scholar 

  27. Ts. Sumyanova, D. Kharitonov, A. Kharcheva, et al., Proc. SPIE 11322, 113220D (2019). https://doi.org/10.1117/12.2548826

    Article  Google Scholar 

  28. N. E. Borisova, A. V. Ivanov, A. V. Kharcheva, et al., Molecules 25, 62 (2019). https://doi.org/10.3390/molecules25010062

    Article  Google Scholar 

  29. M. Tropiano, C. J. Record, E. Morris, et al., Organometallics 31, 5673 (2012). https://doi.org/10.1021/om3003569

    Article  Google Scholar 

  30. J.-C. G. Bünzli, Coord. Chem. Rev. 293–294, 19 (2015). https://doi.org/10.1016/j.ccr.2014.10.013

    Article  Google Scholar 

  31. U. P. Wild, A. R. Holzwarth, and H. P. Good, Rev. Sci. Instrum. 48, 1621 (1977). https://doi.org/10.1063/1/1134962

    Article  ADS  Google Scholar 

  32. M. Moriyasu, Y. Yokoyama, and S. Ikeda, Nucl. Chem. 39, 2199 (1977). https://doi.org/10.1016/0022-1902(77)80392-3

    Article  Google Scholar 

  33. G. Geipel, S. Amayri, and G. Bernhard, Spectrochim. Acta, Part A 71, 53 (2008). https://doi.org/10.1016/j.saa.2007.11.007

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Russian Science Foundation grant number 21-73-20138.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Kupaeva or A. V. Kharcheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupaeva, A.N., Kharcheva, A.V., Ivanov, A.V. et al. Uranyl Luminescence Quenching in the Presence of Organic Reagents Based on 2,2'-Bipyridyldicarboxylic Acid. Moscow Univ. Phys. 76 (Suppl 1), S13–S17 (2021). https://doi.org/10.3103/S0027134922010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922010064

Keywords:

Navigation