Skip to main content
Log in

Thorium adsorption by oxidized biochar fibres derived from Luffa cylindrica sponges

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present study deals with the preparation of oxidized biochar fibres derived from Luffa cylindrica sponges and the subsequent adsorption of Th(IV). The adsorption experiments were performed by batch-type experiments and include the effect of various physiochemical parameters, as well as characterization of the solid phases by means of spectroscopic (FTIR) and XRD measurements. The experimental data are best described by the pseudo-second order kinetic model (R2 = 0.998) and the adsorbent was found to have a relatively high adsorption capacity (qmax = 70 mg g−1) even at pH 3, attributed to the formation of inner-sphere complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    Article  CAS  Google Scholar 

  2. Chedeville O, Debacq M, Porte C (2009) Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination 249:865–869

    Article  CAS  Google Scholar 

  3. Amin NAS, Akhtar J, Rai HK (2010) Screening of combined zeolite-ozone system for phenol and COD removal. Chem Eng J 158:520–527

    Article  CAS  Google Scholar 

  4. El-Ashtoukhy E-SZ, El-Taweel YA, Abdelwahab O, Nassef EM (2013) Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int J Electrochem Sci 8:1534–1550

    CAS  Google Scholar 

  5. Abdelwahab O, Amin NK, El-Ashtoukhy E-S (2009) Electrochemical removal of phenol from oil refinery wastewater. J Hazard Mater 163:711–716

    Article  CAS  PubMed  Google Scholar 

  6. Burghoff B, de Haan AB (2009) Liquid-liquid equilibrium study of phenol extraction with Cyanex 923. Sep Sci Technol 44:1753–1771

    Article  CAS  Google Scholar 

  7. Yu P, Chang Z, Ma Y, Wang S, Cao H, Hua C, Liu H (2009) Separation of p-Nitrophenol and o-Nitrophenol with three-liquid-phase extraction system. Sep Purif Technol 70:199–206

    Article  CAS  Google Scholar 

  8. Bodalo A, Gomez E, Hidalgo AM, Gomez M, Murcia MD, Lopez I (2009) Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination 245:680–686

    Article  CAS  Google Scholar 

  9. Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157:348–356

    Article  CAS  Google Scholar 

  10. Tarley CRT, Arruda MAZ (2003) Natural adsorbents: potential and applications of natural sponge (Luffa cylindrica) in lead removal in wastewater laboratory. Rev Anal 4:26–31

    Google Scholar 

  11. Tran HH, Roddick FA, O’Donnell FA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. Adsorption and kinetics. Water Res 33:2992–3000

    Article  CAS  Google Scholar 

  12. Dabrowski A (2001) Adsorption, from theory to practice. Adv Colloid Interface 93:135–224

    Article  CAS  Google Scholar 

  13. Liatsou I, Constantinou P, Pashalidis I (2017) Copper binding by activated biochar fibres derived from Luffa Cylindrica. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3411-8

    Article  Google Scholar 

  14. Liatsou I, Michail G, Demetriou M, Pashalidis I (2017) Uranium binding by biochar fibres derived from Luffa cylindrica after controlled surface oxidation. J Radioanal Nucl Chem 311:871–875

    Article  CAS  Google Scholar 

  15. Hadjittofi L, Prodromou M, Pashalidis I (2014) Activated biochar derived from cactus fibres—preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol 159:460–464

    Article  CAS  PubMed  Google Scholar 

  16. Somayajulu BLK, Goldberg ED (1966) Thorium and uranium isotopes in seawater and sediments. Earth Planet Sci Lett 1:102–106

    Article  CAS  Google Scholar 

  17. Fanghänel Th, Neck V (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem 74:1895–1907

    Article  Google Scholar 

  18. IAEA (2002) Thorium fuel utilization: options and trends. In: Proceedings of three IAEA meetings held in Vienna in 1997, 1998 and 1999. IAEA-TECDOC-1319

  19. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) Thorium removal by different adsorbents. J Hazard Mater B97:71–82

    Article  Google Scholar 

  20. Anirudhan TS, Rejeena SR (2011) Thorium(IV) removal and recovery from aqueous solutions using tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  21. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J Environ Radioact 116:141–147

    Article  CAS  PubMed  Google Scholar 

  22. Salem NA, Yakoot SME (2016) Adsorption kinetic and mechanism studies of thorium on nitric acid oxidized activated carbon. Desalin Water Treat 57(58):28313–28322

    Article  CAS  Google Scholar 

  23. Chen Y, Wei Y, He L, Tang F (2016) Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin. J Chromatogr A 1466:37–41

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Huang C, Li F, Dong Y, Sun X (2017) Process for the separation of thorium and rare earth elements from radioactive waste residues using Cyanex® 572 as a new extractant. Hydrometallurgy 169:158–164

    Article  CAS  Google Scholar 

  25. Liatsou I, Pashalidis I, Oezaslan M, Dosche C (2017) Surface characterization of oxidized biochar fibers derived from Luffa cylindrica and lanthanide binding. J Environ Chem Eng 5:4069–4074

    Article  CAS  Google Scholar 

  26. Langmuir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochim Cosmochim Acta 44:1753–1766

    Article  CAS  Google Scholar 

  27. Worthen AJ, Lapitsky Τ (2011) Stabilization of bioderived surfactant/polyelectrolyte complexes through surfactant conjugation to the biopolymer. Colloid Polym Sci 289:1589–1596

    Article  CAS  Google Scholar 

  28. Kutahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  CAS  Google Scholar 

  29. Bhalara PD, Punetha D, Balasubramanian K (2015) Kinetic and isotherm analysis for selective thorium(IV) retrieval from aqueous environment using eco-friendly cellulose composite. Int J Environ Sci Technol 12:3095–3106

    Article  CAS  Google Scholar 

  30. Riazi M, Keshtkar AR, Moosavian MA (2014) Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling. J Radioanal Nucl Chem 301:493–503

    Article  CAS  Google Scholar 

  31. Zhou L, Wang Y, Zou H, Liang X, Zeng K, Liu Z, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307:635–644

    Article  CAS  Google Scholar 

  32. Li Y, Wang C, Guo Z, Liu C, Wu W (2014) Sorption of thorium(IV) from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 299:1683–1691

    Article  CAS  Google Scholar 

  33. Hadjittofi L, Pashalidis I (2016) Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalin Water Treat 57:27864–27868

    CAS  Google Scholar 

  34. Pan N, Deng J, Guan D, Jin Y, Xia C (2013) Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions. Appl Surf Sci 287:478–483

    Article  CAS  Google Scholar 

  35. Agarwal AK, Kadu MS, Pandhurnekar CP, Muthreja IL (2015) Kinetics study on the adsorption of Ni2+ ions onto flyash. J Chem Technol Metall 60:601–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pashalidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liatsou, I., Christodoulou, E. & Pashalidis, I. Thorium adsorption by oxidized biochar fibres derived from Luffa cylindrica sponges. J Radioanal Nucl Chem 317, 1065–1070 (2018). https://doi.org/10.1007/s10967-018-5959-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5959-1

Keywords

Navigation