Skip to main content
Log in

Sorption of thorium(IV) from aqueous solutions by graphene oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is one of the most important carbon nano-materials. In this paper, GO was synthesized from flake graphite and characterized by transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The sorption of Th(IV) on GO was investigated as a function of contact time, solid-to-liquid ratio, pH, ionic strength, and in the presence of fulvic acid (FA) and humic acid (HA) by batch experiments. The sorption percentage of Th(IV) on GO decreased with increasing ionic strength and decreasing solid-to-liquid ratio. The sorption edge of Th(IV) in the presence of FA/HA is much lower than that in the absence of FA/HA. Furthermore, the sorption processes of Th(IV) can be described by a pseudo-second order rate model. Based on the Langmuir model, the maximum sorption capacities (Csmax) of Th(IV) were about 5.80 × 10−4 mol/L. From thermodynamic investigation, sorption of Th(IV) on GO is spontaneous and endothermic in nature. The rapid sorption rate and high sorption capacity suggest that GO is a promising adsorbent for Th(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F (2011) Langmuir 27(12):7558–7562

    Article  CAS  Google Scholar 

  2. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Carbon 42:2929–2937

    CAS  Google Scholar 

  3. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  4. Yang JT, Wu MJ, Chen F, Fei ZD, Zhong MQ (2011) J Supercrit Fluid 56:201–207

    CAS  Google Scholar 

  5. Machida M, Yamazaki R, Aikawa M, Tatsumoto H (2005) Sep Purif Technol 46:88–94

    CAS  Google Scholar 

  6. Kikuchi Y, Qian QR, Machida M, Tatsumoto H (2006) Carbon 44:195–202

    CAS  Google Scholar 

  7. Shim JW, Park SJ, Ryu SK (2001) Carbon 39:1635–1642

    CAS  Google Scholar 

  8. Strelko V, Malik DJ (2002) J Colloid Interface Sci 250:213–220

    CAS  Google Scholar 

  9. Boehm HP (2002) Carbon 40:145–149

    CAS  Google Scholar 

  10. Montes-Moran MA, Suarez D, Menendez JA, Fuente E (2004) Carbon 42:1219–1225

    CAS  Google Scholar 

  11. Rivera-Utrilla J, Sanchez-Polo M (2003) Water Res 37:3335–3340

    CAS  Google Scholar 

  12. Balog R, Jorgensen B, Wells J, Laegsgaard E, Hofmann P, Besenbacher F, Hornekaer L (2009) J Am Chem Soc 131:8744–8745

    CAS  Google Scholar 

  13. Kim G, Jhi SH (2009) J Phys Chem C 113:20499–20503

    CAS  Google Scholar 

  14. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77(12):125416–125421

    Google Scholar 

  15. Petit C, Bandosz TJ (2009) J Phys Chem C 113:3800–3809

    CAS  Google Scholar 

  16. Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC (2009) Nanotechnology 20:245501–245509

    Google Scholar 

  17. Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) J Colloid Interface Sci 351:122–127

    CAS  Google Scholar 

  18. Li ZJ, Chen F, Yuan LY, Liu YL, Zhao YL, Chai ZF, Shi WQ (2012) Chem Eng J 210:239–546

    Google Scholar 

  19. Kütahyalı C, Eral M (2010) J Nucl Mater 396:251–256

    Google Scholar 

  20. Metilda P, Gladis JM, Rao TP (2006) Talanta 68:1047–1064

    Google Scholar 

  21. Qadeer R, Hanif J, Hanif I (1995) J Radioanal Nucl Chem 190:103–112

    CAS  Google Scholar 

  22. Kaygun AK, Akyil S (2007) J Hazard Mater 147:357–362

    CAS  Google Scholar 

  23. Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW (2008) Radiochim Acta 96:159–165

    CAS  Google Scholar 

  24. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628

    CAS  Google Scholar 

  25. Pan DQ, Fan QH, Li P, Liu SP, Wu WS (2011) Chem Eng J 172:898–905

    CAS  Google Scholar 

  26. Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313–1320

    CAS  Google Scholar 

  27. Sharma P, Tomar R (2011) J Colloid Interface Sci 362:144–156

    CAS  Google Scholar 

  28. Wu WS, Fan QH, Xu JZ, Niu ZW, Lu S (2007) Appl Radiat Isot 65:1108–1114

    CAS  Google Scholar 

  29. Guo ZJ, Niu LJ, Tao ZY (2005) J Radioanal Nucl Chem 266:333–338

    CAS  Google Scholar 

  30. Zhang HX, Zheng ZD (2006) Tao Zy. Colloids Surf A 278:46–52

    CAS  Google Scholar 

  31. Tan XL, Wang XK, Fang M, Chen CL (2007) Colloids Surf A 296:109–116

    CAS  Google Scholar 

  32. Yan L, Fan QH, Wu WS (2011) J Radioanal Nucl Chem 289:865–871

    CAS  Google Scholar 

  33. Chen CL, Wang XK (2007) Appl Radiat Isot 65:155–163

    CAS  Google Scholar 

  34. Östhols E (1995) Geochim Cosmochim Acta 59:1235–1249

    Google Scholar 

  35. Chen CL, Wang XK (2007) Appl Geochem 2:436–445

    Google Scholar 

  36. Chen CL, Li XL, Zhao DL, Tan XL, Wang XK (2007) Colloids Surf A 302:449–454

    CAS  Google Scholar 

  37. William S, Hummers J, Offeman R (1958) J Am Chem Soc 80:1339–1341

    Google Scholar 

  38. Li D, Kaner RB (2008) Science 320:1170–1171

    CAS  Google Scholar 

  39. Luo JY, Cote LJ, Tung VC, Tan ATL, Goins PE, Wu JS, Huang JX (2010) J Am Chem Soc 132:17667–17669

    CAS  Google Scholar 

  40. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) J Environ Radioact 116:141–147

    CAS  Google Scholar 

  41. Guo ZJ, Li Y, Wu WS (2009) Appl Radiat Isot 67:996–1000

    CAS  Google Scholar 

  42. Zhang QH, Sun SY, Li SP, Jiang H, Yu JG (2007) Chem Eng Sci 62:4869–4874

    CAS  Google Scholar 

  43. Lu X, Yin QF, Xin Z, Zhang ZQ (2010) Chem Eng Sci 65:6471–6477

    Google Scholar 

  44. Noh JS, Schwarz JA (1990) Carbon 28:675–682

    CAS  Google Scholar 

  45. Yang ST, Chang YL, Wang HF, Liu GF, Chen S, Wang YW, Liu YF, Cao AN (2010) J Colloid Interface Sci 351:122–127

    CAS  Google Scholar 

  46. Deng XJ, Lu LL, Li HW, Luo F (2010) J Hazard Mater 183:923–930

    CAS  Google Scholar 

  47. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276–1291

    CAS  Google Scholar 

  48. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560–10564

    CAS  Google Scholar 

  49. Shen XP, Jiang L, Ji ZY, Wu JL, Zhou H, Zhu GX (2011) J Colloid Interface Sci 354:493–497

    CAS  Google Scholar 

  50. Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ (2010) J Phys Chem C 114:16168–16173

    CAS  Google Scholar 

  51. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Environ Sci Technol 45:10454–10462

    CAS  Google Scholar 

  52. Hosseini MS, Hosseini-Bandegharaei A (2011) J Hazard Mater 190:755–765

    CAS  Google Scholar 

  53. Oke I, Olarinoye N, Adewusi S (2008) Adsorption 14:73–83

    CAS  Google Scholar 

  54. Deng XJ, Lu LL, Li HW, Luo F (2010) J Hazard Mater 183:923–930

    CAS  Google Scholar 

  55. Allen GC, Hubert S, Simoni E (1995) J Chem Soc 91:2767–2769

    CAS  Google Scholar 

  56. Krause M, Haire R, Keski-Rahkonen O, Peterson J (1988) J Electron Spectrosc Relat Phenom 47:215–226

    CAS  Google Scholar 

  57. Sharma P, Tomar R (2008) Microporous Mesoporous Mater 116:641–652

    CAS  Google Scholar 

  58. Bhattacharyya KG, Gupta SS (2006) Adsorption 12:185–204

    CAS  Google Scholar 

  59. Sharma A, Bhattacharyya KG (2005) Adsorption 10:327–338

    Google Scholar 

  60. Ngah WSW, Kamari A, Fatinathan S, Ng PW (2006) Adsorption 12:249–257

    CAS  Google Scholar 

  61. Monash P, Pugazhenthi G (2009) Adsorption 15:390–405

    CAS  Google Scholar 

  62. Lützenkirchen J (1997) J Colloid Interface Sci 195:149–155

    Google Scholar 

  63. Goldberg S (2005) J Colloid Interface Sci 285:509–517

    CAS  Google Scholar 

  64. Yee N, Fein JB, Daughney CJ (2000) Geochim Cosmochim Acta 64:609–617

    CAS  Google Scholar 

  65. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS (2010) J Radioanal Nucl Chem 283:653–660

    CAS  Google Scholar 

  66. Zhang H, Yu XJ, Chen L, Geng JQ (2010) J Radioanal Nucl Chem 286:249–258

    CAS  Google Scholar 

  67. Reiller P, Casanova F, Moulin V (2005) Environ Sci Technol 39:1641–1648

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant Nos. 11075006 and 91026010), the Ministry of Education of the People’s Republic of China (Grant No. 1002, 20120001110082), and the State Administration of Science Technology and Industry for National Defence (Grant Nos. 2007-840, 2012-851) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangsuo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, C., Guo, Z. et al. Sorption of thorium(IV) from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 299, 1683–1691 (2014). https://doi.org/10.1007/s10967-014-2956-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2956-x

Keywords

Navigation