Skip to main content
Log in

Radiation chemical aspects of the origins of life

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A review is presented on the abiotic synthesis of amino acids and purine and pyrimidine bases in processes involving the action of high energy radiation. It is shown that all the 20 proteinogenic amino acids and a selection of non-proteinogenic amino acids are able to “survive” to 14 MGy, equivalent to the calculated dose received by these molecules in 4.6 billions of years buried in comets and asteroids. Even the enantiomeric enrichment is preserved after 14 MGy. The review is closed with some considerations on the role which could be played by radiation-induced polymerization with enhancement of optical activity or occurring at very low temperatures with a tunneling mechanism, in the abiotic synthesis of information macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fenchel T (2002) Origin and early evolution of life. Oxford University Press, Oxford

    Google Scholar 

  2. Cataldo F, Keheyan Y (2003) In: Zaikov GE, Lobo VMM (eds) Studies in chemistry and biochemistry. Nova Science Publishers, New York

    Google Scholar 

  3. Thomas PJ, Chyba CF, McKay CP (eds) (1997) Comets and the origin and evolution of life. Springer-Verlag, New York

    Google Scholar 

  4. Chela-Flores J, Raulin F (1998) Exobiology: matter, energy, and information in the origin and evolution of life. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  5. Brack A (ed) (2000) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge

    Google Scholar 

  6. Ehrenfreund P (ed) (2004) Astrobiology: future perspectives. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  7. Shaw AW (2006) Astrochemistry. From astronomy to astrobiology. Wiley, New York

    Google Scholar 

  8. Luisi PL (2006) The emergence of life: from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Gargaud M, Barbier B, Martin H, Reisse J (eds) (2006) Lectures in astrobiology. Part 1: the early earth and other cosmic habitats for life, vol 1. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  10. Gargaud M, Barbier B, Martin H, Reisse J (eds) (2006) Lectures in Astrobiology. Part 2: from prebiotic chemistry to the origin of life on earth, vol 1. Springer-Verlag, Berlin-Hedelberg

    Google Scholar 

  11. Gargaud M, Martin H, Claeys P (eds) (2007) Lectures in astrobiology, vol 2. Springer, Berlin-Hedelberg

    Google Scholar 

  12. Jastrow R, Rampino M (2008) Origins of life in the universe. Cambridge University Press, Cambridge

    Google Scholar 

  13. Gargaud M, Amils R, Chernicharo J, Cleaves HJ, Irvine WM, Pinti DL (eds) (2011) Encyclopedia of astrobiology. Springer, Berlin

    Google Scholar 

  14. Kwok S (2012) Organic matter in the universe. Wiley-VCH, Weinheim

    Google Scholar 

  15. Kwok S (2013) Stardust: the cosmic seeds of life. Springer, Berlin

    Book  Google Scholar 

  16. Smith E, Morowitz HJ (2016) The origins and nature of life on earth. The Emergence of the Fourth Geosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Davis WL, McKay CP (1996) Origins of life: a comparison of theories and application to Mars. Orig Life Evol Biosph 26:61–73

    Article  CAS  Google Scholar 

  18. Orgel LE (1998) The origin of life: a review of facts and speculations. Trends Biochem Sci 23:491–495

    Article  CAS  Google Scholar 

  19. Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu Rev Astron Astrophys 38:427–483

    Article  CAS  Google Scholar 

  20. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366

    Article  CAS  Google Scholar 

  21. Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  22. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    Article  CAS  Google Scholar 

  23. Bada JL (2000) Stanley Miller’s 70th birthday. Orig Life Evol Biosph 30:107–112

    Article  Google Scholar 

  24. Miller SL (2000) In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge

    Google Scholar 

  25. Bada JL (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem Soc Rev 42:2186–2196

    Article  CAS  Google Scholar 

  26. Khare BN, Sagan C (1971) Long-wavelength ultraviolet photoproduction of amino acids on the primitive earth (Long wavelength UV photoproduction of amino acids on primitive earth, using hydrogen sulfide as photon acceptor). Science 173:417–420

    Article  Google Scholar 

  27. Khare BN, Sagan C (1971) Synthesis of cystine in simulated primitive conditions. Nature 232:577–579

    Article  CAS  Google Scholar 

  28. De La Paz LR, Getoff N (1966) Cobalt-60 gamma-ray-induced carboxylation of methylamine. Radiat Res 28:567–575

    Article  CAS  Google Scholar 

  29. Getoff N, Schenck GO (1967) On the formation of amino acids by gamma-ray-induced carboxylation of amines in aqueous solutions. Radiat Res 31:486–505

    Article  CAS  Google Scholar 

  30. Paschke R, Chang RWH, Young D (1957) Probable role of gamma irradiation in the origins of life. Science 125:881

    Article  CAS  Google Scholar 

  31. Harada K, Suzuki S (1977) Formation of amino acids from ammonium bicarbonate or ammonium formate by contact glow-discharge electrolysis. Naturwissenschaften 64:484

    Article  CAS  Google Scholar 

  32. Adam Z (2007) Actinides and life’s origins. Astrobiology 7:852–872

    Article  CAS  Google Scholar 

  33. Getoff N, Schenck GO (1968) 60Co-γ-ray induced formation of sulfur-containing amino acids in aqueous solutions. Adv Chem Ser 81:337–344

    Article  Google Scholar 

  34. Getoff N (2014) Significance of solvated electrons as promoters of life on Earth. In Vivo 4:61–66

    Google Scholar 

  35. Houeé-Levin C, Sicard-Roselli C (2001) In: Jonah CD, Madhava Rao BS (eds) Radiation chemistry: present status and future trends. Elsevier, Amsterdam

    Google Scholar 

  36. Draganić Z, Draganić I, Shimoyama A, Ponnamperuma C (1977) Evidence for amino acids in hydrolysates of compounds formed by ionizing radiations. Origins Life Evol Biosph 8:371–376

    Article  Google Scholar 

  37. Colín-García M, Ortega-Gutiérrez F, Ramos-Bernal S, Negrón-Mendoza A (2010) Heterogeneous radiolysis of HCN adsorbed on a solid surface. Nucl Instrum Methods Phys Res Sect A 619:83–85

    Article  CAS  Google Scholar 

  38. Ferris JP, Hagan WJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120

    Article  CAS  Google Scholar 

  39. Cataldo F, Patane G, Compagnini G (2009) Synthesis of HCN polymer from thermal decomposition of formamide. J Macromol Sci Part A Pure Appl Chem 46:1039–1048

    Article  CAS  Google Scholar 

  40. Cataldo F, Lilla E, Ursini O, Angelini G (2010) TGA–FT-IR study of pyrolysis of poly (hydrogen cyanide) synthesized from thermal decomposition of formamide. Implications in cometary emissions. J Anal Appl Pyrol 87:34–44

    Article  CAS  Google Scholar 

  41. Negrón-Mendoza A, Draganić ZD (1984) Search for heterocyclic radiolytic products in aqueous solutions of cyanides. Adv Space Res 4:121–124

    Article  Google Scholar 

  42. Matthews CN, Minard RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss 133:393–401

    Article  CAS  Google Scholar 

  43. Adande GR, Woolf NJ, Ziurys LM (2013) Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone. Astrobiology 13:439–453

    Article  CAS  Google Scholar 

  44. Gibb EL, Whittet DCB, Schutte W, Boogert ACA, Chiar JE, Ehrenfreund P, Kerkhof O (2000) An inventory of interstellar ices toward the embedded protostar W33A based on observations with ISO. Astrophys J 536:347–356

    Article  Google Scholar 

  45. Bockelée-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Gérard E (2000) New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron Astrophys 353:1101–1114

    Google Scholar 

  46. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 11:1240–1243

    Article  CAS  Google Scholar 

  47. Saladino R, Crestini C, Neri V, Brucato JR, Colangeli L, Ciciriello F, Costanzo G (2005) Synthesis and degradation of nucleic acid components by formamide and cosmic dust analogues. ChemBioChem 6:1368–1374

    Article  CAS  Google Scholar 

  48. Saladino R, Botta G, Delfino M, Di Mauro E (2013) Meteorites as catalysts for prebiotic chemistry. Chem Eur J 19:16916–16922

    Article  CAS  Google Scholar 

  49. Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Di Mauro E (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci 112:E2746–E2755

    Article  CAS  Google Scholar 

  50. Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalčíková R, Shestivská V, Sponer JE, Civiš S (2015) High-energy chemistry of formamide: a unified mechanism of nucleobase formation. Proc Natl Acad Sci 112:657–662

    Article  CAS  Google Scholar 

  51. Allamandola LJ, Bernstein MP, Sandford SA, Walker RL (1999) Evolution of Interstellar Ices. Space Sci Rev 90:219–232

    Article  CAS  Google Scholar 

  52. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403

    Article  CAS  Google Scholar 

  53. Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Segovia AA, Rosenbauer H, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406

    Article  Google Scholar 

  54. Takano Y, Masuda H, Kaneko T, Kobayashi K (2002) Formation of amino acids from possible interstellar media by γ-rays and UV irradiation. Chem Lett 2002:986–987

    Article  Google Scholar 

  55. Chen YJ, Nuevo M, Yih TS, Ip WH, Fung HS, Cheng CY, Wu CY (2008) Amino acids produced from the ultraviolet/extreme-ultraviolet irradiation of naphthalene in a H2O + NH3 ice mixture. Mon Not R Astron Soc 384:605–610

    Article  CAS  Google Scholar 

  56. Öberg KI (2016) Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules. Chem Rev. doi:10.1021/acs.chemrev.5b00694

    Google Scholar 

  57. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  58. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182

    Article  CAS  Google Scholar 

  59. Manchado A, Díaz-Luis JJ, García-Hernández DA, Cataldo F (2013) A catalog of diffuse interstellar bands in fullerene-containing planetary nebulae. Proc Int Astron Union 9:223–225

    Article  CAS  Google Scholar 

  60. Iglesias-Groth S, Hafez Y, Angelini G, Cataldo F (2013) γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: relevance of fullerene fate in ices of interstellar medium. J Radioanal Nucl Chem 298:1073–1083

    Article  CAS  Google Scholar 

  61. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  CAS  Google Scholar 

  62. Pizzarello S, Cronin JR (1998) Alanine enantiomers in the Murchison meteorite. Nature 394:236

    Article  CAS  Google Scholar 

  63. Cronin JR, Pizzarello S (1999) Amino acid enantiomer excesses in meteorites: origin and significance. Adv Space Res 23:293–299

    Article  CAS  Google Scholar 

  64. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64:329–338

    Article  CAS  Google Scholar 

  65. Meierhenrich U (2008) Amino acids and asymmetry of life. Springer, Berlin

    Google Scholar 

  66. Guijarro A, Yus M (2009) The origin of chirality in the molecules of life. Royal Society of Chemistry, Cambridge

    Google Scholar 

  67. Martins Z, Sephton MA (2009) Origins and synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  68. Eliel EL, Wilen SH (2008) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  69. Jorissen A, Cerf C (2002) Asymmetric photoreactions as the origin of biomolecular homochirality: a critical review. Orig Life Evol Biosph 32:129–142

    Article  CAS  Google Scholar 

  70. Podlech J (2001) Origin of organic molecules and biomolecular homochirality. Cell Mol Life Sci 58:44–60

    Article  CAS  Google Scholar 

  71. Flores JJ, Bonner WA, Massey GA (1977) Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J Am Chem Soc 99:3622–3625

    Article  CAS  Google Scholar 

  72. Meierhenrich UJ, Nahon L, Alcaraz C, Bredehöft JH, Hoffmann SV, Barbier B, Brack A (2005) Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew Chem Int Ed 44:5630–5634

    Article  CAS  Google Scholar 

  73. Meierhenrich UJ, Filippi JJ, Meinert C, Hoffmann SV, Bredehöft JH, Nahon L (2010) Photolysis of rac-Leucine with circularly polarized synchrotron radiation. Chem Biodivers 7:1651–1659

    Article  CAS  Google Scholar 

  74. Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31:167–183

    Article  CAS  Google Scholar 

  75. Crovisier J, Encrenaz TRS (2000) Comet science: the study of remnants from the birth of the solar system. Cambridge University Press, Cambridge

    Google Scholar 

  76. Thomas PJ, Hicks RD, Chyba CF, McKay CP (eds) (2006) Comets and the origin and evolution of life. Springer, Berlin

    Google Scholar 

  77. Takano Y, Takahashi JI, Kaneko T, Marumo K, Kobayashi K (2007) Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet Sci Lett 254:106–114

    Article  CAS  Google Scholar 

  78. Bonner WA, Blair NE, Lemmon RM (1979) Racemization of isovaline by gamma-radiation. Cosmological implications. J Am Chem Soc 101:1049–1050

    Article  CAS  Google Scholar 

  79. Bonner WA, Lemmon RM (1981) The radiolysis and radioracemization of amino acids on silica surfaces. Orig Life Evol Biosph 11:321–330

    Article  CAS  Google Scholar 

  80. Bonner WA, Hall H, Chow G, Liang Y, Lemmon RM (1985) The radiolysis and radioracemization of amino acids on clays. Orig Life Evol Biosph 15:103–114

    Article  CAS  Google Scholar 

  81. Bonner WA (1999) The radiolysis and radioracemization of poly-l-leucines. Radiat Res 152:83–87

    Article  CAS  Google Scholar 

  82. Cataldo F, Keheyan Y, Baccaro S (2004) Gamma-radiolysis of chiral molecules: R (+)-limonene, S (−)-limonene and R (−)-a-phellandrene. J Radioanal Nucl Chem 262:423–428

    Article  CAS  Google Scholar 

  83. Cataldo F, Brucato JR, Keheyan Y (2005) Chirality in prebiotic molecules and the phenomenon of photo-and radioracemization. J Phys: Conf Ser 6:139–148

    CAS  Google Scholar 

  84. Cataldo F (2007) Gamma-radiolysis of chiral terpenes: α-(−) pinene and α-(+) pinene. J Radioanal Nucl Chem 272:107–113

    Article  CAS  Google Scholar 

  85. Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars (Part 1). Proc Natl Acad Sci 41:127–144

    Article  CAS  Google Scholar 

  86. Urey HC (1956) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars (Part 2). Proc Natl Acad Sci 42:889–891

    Article  CAS  Google Scholar 

  87. Draganic IG, Draganic ZD, Adloff JP (1993) Radiation and radioactivity on the earth and beyond. CRC Press, Boca Raton

    Google Scholar 

  88. Navarro-González R, Romero A (1996) On the survivability of an enantiomeric excess of amino acids in comet nuclei during the decay of 26Al and other radionuclides. Astrophys Space Sci 236:49–60

    Article  Google Scholar 

  89. Cruikshank DP (1987) Dark matter in the solar system. Adv Space Res 7:109–120

    Article  CAS  Google Scholar 

  90. Iglesias-Groth S, Cataldo F, Ursini O, Manchado A (2011) Amino acids in comets and meteorites: stability under gamma radiation and preservation of the enantiomeric excess. Mon Not R Astron Soc 410:1447–1453

    CAS  Google Scholar 

  91. Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Radiolysis and radioracemization of 20 amino acids from the beginning of the Solar System. Rend Lincei 22:81–94

    Article  Google Scholar 

  92. Cataldo F, Angelini G, Iglesias-Groth S, Manchado A (2011) Solid state radiolysis of amino acids in an astrochemical perspective. Radiat Phys Chem 80:57–65

    Article  CAS  Google Scholar 

  93. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2011) Solid state radiolysis of sulphur-containing amino acids: cysteine, cystine and methionine. J Radioanal Nucl Chem 287:573–580

    Article  CAS  Google Scholar 

  94. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2011) A detailed analysis of the properties of radiolyzed proteinaceous amino acids. J Radioanal Nucl Chem 287:903–911

    Article  CAS  Google Scholar 

  95. Sagstuen E, Sanderud A, Hole EO (2004) The solid-state radiation chemistry of simple amino acids, revisited. Radiat Res 162:112–119

    Article  CAS  Google Scholar 

  96. Hohne G, Hemminger W, Flammersheim HJ (1996) Differential scanning calorimetry. An Introduction for Practitioners. Springer, Berlin

    Book  Google Scholar 

  97. Cherubini C, Ursini O, Cataldo F, Iglesias-Groth S, Crestoni ME (2014) Mass spectrometric analysis of selected radiolyzed amino acids in an astrochemical context. J Radioanal Nucl Chem 300:1061–1073

    Article  CAS  Google Scholar 

  98. Cherubini C, Ursini O (2015) Amino acids chemical stability submitted to solid state irradiation: the case study of leucine, isoleucine and valine. SpringerPlus 4:1–10

    Article  CAS  Google Scholar 

  99. Djerassi C (1960) Optical rotatory dispersion applications to organic chemistry. McGraw-Hill, New York

    Google Scholar 

  100. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5

    Article  CAS  Google Scholar 

  101. Sephton MA, Love GD, Watson JS, Verchovsky AB, Wright IP, Snape CE, Gilmour I (2004) Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure. Geochim Cosmochim Acta 68:1385–1393

    Article  CAS  Google Scholar 

  102. Commeyras A, Boiteau L, Vandenabeele-Trambouze O, Selsis F (2006) In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology. Part 2: from prebiotic chemistry to the origin of life on earth, vol 1. Springer, Berlin

    Google Scholar 

  103. Kress ME, Tielens AG (2001) The role of Fischer–Tropsch catalysis in solar nebula chemistry. Meteorit Planet Sci 36:75–91

    Article  CAS  Google Scholar 

  104. Freeland S (2009) Chapter 2: origins and synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  105. Cataldo F, Angelini G, Hafez Y, Iglesias-Groth S (2013) Solid state radiolysis of non-proteinaceous amino acids in vacuum: astrochemical implications. J Radioanal Nucl Chem 295:1235–1243

    Article  CAS  Google Scholar 

  106. Cataldo F, Iglesias-Groth S, Angelini G, Hafez Y (2013) Stability toward high energy radiation of non-proteinogenic amino acids: implications for the origins of life. Life 3:449–473

    Article  CAS  Google Scholar 

  107. Cataldo F, Keheyan Y (2006) Radiopolymerization of β (−) pinene: a case of chiral amplification. Radiat Phys Chem 75:572–582

    Article  CAS  Google Scholar 

  108. Cataldo F, Brucato JR, Keheyan Y (2006) γ-Radiation induced polymerization of a chiral monomer: a new way to produce chiral amplification. Orig Life Evol Biosph 36:477–485

    Article  CAS  Google Scholar 

  109. Cataldo F, Gobbino M, Ursini O, Angelini G (2007) A study on the optically active polymer poly-β-pinene. J Macromol Sci Part A Pure Appl Chem 44:1225–1234

    Article  CAS  Google Scholar 

  110. Cataldo F, Ragni P, Ursini O (2007) Radiation-induced polymerization of β (−) pinene: a further insight. J Radioanal Nucl Chem 272:29–36

    Article  CAS  Google Scholar 

  111. Cataldo F (2007) Radiation-induced racemization and amplification of chirality: implications for comets and meteorites. Int J Astrobiol 6:1–10

    Article  CAS  Google Scholar 

  112. Cataldo F, Ursini O, Angelini G (2008) Radioracemization and radiation-induced chiral amplification of chiral terpenes measured by optical rotatory dispersion (ORD) spectroscopy. Radiat Phys Chem 77:961–967

    Article  CAS  Google Scholar 

  113. Cataldo F, Angelini G, Capitani D, Gobbino M, Ursini O, Forlini F (2008) Determination of the Chemical Structure of Poly-β(−)-pinene by NMR Spectroscopy. J Macromol Sci Part A 45:839–849

    Article  CAS  Google Scholar 

  114. Cataldo F, Ursini O, Angelini G, Ragni P (2009) Radiation-induced inclusion polymerization of β(−)pinene in deoxycholic acid. J Macromol Sci Part A Pure Appl Chem 46:493–502

    Article  CAS  Google Scholar 

  115. Cataldo F, Lilla E, Ursini O (2011) Radiation-induced polymerization of β(+)-pinene and synthesis of optically active β(+)/β(−) pinene polymers and copolymers. Radiat Phys Chem 80:723–730

    Article  CAS  Google Scholar 

  116. Dermer O, Ham GE (1969) Ethylenimine and other aziridines: chemistry and applications. Academic Press, New York

    Google Scholar 

  117. Lengyel I, Sheehan JC (1968) α-Lactame (Aziridinone). Angew Chem 80:27–37

    Article  Google Scholar 

  118. Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31:247–258

    Article  CAS  Google Scholar 

  119. Stewart IC, Lee CC, Bergman RG, Toste FD (2005) Living ring-opening polymerization of N-sulfonylaziridines: synthesis of high molecular weight linear polyamines. J Am Chem Soc 127:17616–17617

    Article  CAS  Google Scholar 

  120. Cataldo F (2015) A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur Chem Bull 4:92–97

    CAS  Google Scholar 

  121. Miyoshi M (1973) Peptide synthesis via n-acylated aziridinone. 1. The synthesis of 3-substituted-1-benzyloxycarbonylaziridin-2-ones and related compounds. Bull Chem Soc Japan 46:212–218

    Article  CAS  Google Scholar 

  122. Miyoshi M (1973) Peptide synthesis via n-acylated aziridinone. 2. the reaction of n-acylated aziridinone and its use in peptide synthesis. Bull Chem Soc Japan 46:1489–1496

    Article  CAS  Google Scholar 

  123. Boukhris S, Souizi A (2000) Simple syntheses of hydroxamic acids and their conversion into α-hydroxy and α-amino acids. Tetrahedron Lett 41:2559–2562

    Article  CAS  Google Scholar 

  124. Boiteau L (2011) In: Gargaud M, Amils R, Chernicharo J, Cleaves HJ, Irvine WM, Pinti DL (eds) Encyclopedia of astrobiology. Springer, Berlin, pp 36–38

    Chapter  Google Scholar 

  125. Pascal R, Boiteau L, Commeyras A (2005) From the prebiotic synthesis of α-amino acids toward a primitive translation apparatus for the synthesis of peptides. Top Curr Chem 259:69–122

    Article  CAS  Google Scholar 

  126. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem Rev 109:5528–5578

    Article  CAS  Google Scholar 

  127. Cheng J, Deming TJ (2011) Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Top Curr Chem 310:1–26

    Article  CAS  Google Scholar 

  128. Matsuno K (2011) In: Gargaud M, Amils R, Chernicharo J, Cleaves HJ, Irvine WM, Pinti DL (eds) Encyclopedia of astrobiology. Springer, Berlin, p 436

    Chapter  Google Scholar 

  129. Baysal BM (1989) Chapter 17: the synthesis, characterization, reactions and applications of polymers. In: Allen G, Bevington JC, Eastmond GC, Ledwith A, Russo S, Sigwalt P (eds) Comprehensive polymer science, vol 4. Pergamon Press, Oxford

    Google Scholar 

  130. Walker JF (1975) Formaldehyde, 3rd edn. Krieger RE Publishing Co., Huntington

    Google Scholar 

  131. Goldanskii VI (1981) In: Emanuel NM (ed) Problems in chemical kinetics. Mir Publishers, Moscow

    Google Scholar 

  132. Goldanskii VI (1997) Non-traditional pathways of solid-phase astrochemical reactions. Pure Appl Chem 69:877–892

    Article  CAS  Google Scholar 

  133. Benderskii VA, Goldanskii VI, Makarov DE (1993) Quantum dynamics in low-temperature chemistry. Phys Rep 233:195–339

    Article  Google Scholar 

  134. Takada S, Nakamura H (1994) Wentzel–Kramers–Brillouin theory of multidimensional tunneling: general theory for energy splitting. J Chem Phys 100:98–113

    Article  CAS  Google Scholar 

  135. Miyazaki T (ed) (2004) Atom tunneling phenomena in physics, chemistry and biology. Springer, Berlin

    Google Scholar 

  136. Hama T, Watanabe N (2013) Surface processes on interstellar amorphous solid water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem Rev 113:8783–8839

    Article  CAS  Google Scholar 

  137. Meisner J, Kästner J (2016) Atom tunneling in chemistry. Angew Chemie Int Ed 55:5400–5413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Zsolt Revay and all the organizers of RANC-2016 for the kind invitation to deliver an invited lecture at the conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cataldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cataldo, F., Iglesias-Groth, S. Radiation chemical aspects of the origins of life. J Radioanal Nucl Chem 311, 1081–1097 (2017). https://doi.org/10.1007/s10967-016-4914-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4914-2

Keywords

Navigation