Skip to main content
Log in

γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: relevance of fullerene fate in ices of interstellar medium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The γ radiolysis of fullerene C60 dispersed in H2O, H2O/NH3, H2O/methanol and H2O/NH3/methanol was studied at 250 and 500 kGy. It was found that C60 originally insoluble in the above mentioned hosting matrix became soluble as a consequence of multiple hydroxylation and oxidation reaction produced by the free radicals generated by the radiolysis of the hosting matrix. The changes undergone by C60 were studied by infrared spectroscopy (FT-IR) and by electronic absorption spectroscopy. The astrochemical consequences of the present study are that C60 ejected in the interstellar medium for instance from protoplanetary and planetary nebulae can condense together with water and other ices in dense molecular clouds. Under the action of high energy radiation C60 reacts with the free radicals generated from the matrix where it is embedded it is solubilized and consequently its carbon content becomes available for further abiotic processes of synthesis of molecules of astrobiological interest. The behavior of C60 appears comparable to that of common PAHs which are also hydroxylated and oxidized under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Science 329:1180

    Article  CAS  Google Scholar 

  2. García-Hernández DA, Villaver E, Garcıa-Lario P, Acosta-Pulido JA, Manchado A, Stanghellini L, Shaw RA, Cataldo F (2012) Astrophys J 760:107

    Article  Google Scholar 

  3. Sellgren K, Werner MW, Ingalls JG, Smith JDT, Carleton TM, Joblin C (2010) Astrophys J Lett 722:L54

    Article  CAS  Google Scholar 

  4. Zhang Y, Kwok S (2011) Astrophys J 730:126

    Article  Google Scholar 

  5. García-Hernández DA, Kameswara Rao N, Lambert DL (2011) Astrophys J 729:126

    Article  Google Scholar 

  6. García-Hernández DA, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw RA, Szczerba R, Perea-Calderón JV (2010) Astrophys J Lett 724:L39

    Article  Google Scholar 

  7. Cataldo F, Iglesias-Groth S (2009) Month Not R Astron Soc 400:291

    Article  CAS  Google Scholar 

  8. Allamandola LJ (2011) EAS Publication Series 46:305

    Article  CAS  Google Scholar 

  9. Bernstein MP, Dworkin JP, Sandford SA, Allamandola LJ (2001) Meteorit Planet Sci 36:351

    Article  CAS  Google Scholar 

  10. Bernstein MP, Elsila JE, Dworkin JP, Sandford SA, Allamandola LJ, Zare RN (2002) Astrophys J 576:1115

    Article  CAS  Google Scholar 

  11. Bernstein MP, Moore MH, Elsila JE, Sandford SA, Allamandola LJ, Zare RN (2003) Astrophys J 582:L25

    Article  CAS  Google Scholar 

  12. Guennoun Z, Aupetit C, Mascetti J (2011) Phys Chem Chem Phys 13:7340

    Article  CAS  Google Scholar 

  13. Ashbourn SFM, Elsila JE, Dworkin JP, Bernstein MP, Sandford SA, Allamandola LJ (2007) Meteorit Planet Sci 42:2035

    Article  CAS  Google Scholar 

  14. Bouwman J, Mattioda AL, Linnartz H, Allamandola LJ (2011) Astron Astrophys 525:A93

    Article  Google Scholar 

  15. Bouwman J, Cuppen HM, Steglich M, Allamandola LJ, Linnartz H (2011) Astron Astrophys 529:A46

    Article  Google Scholar 

  16. Cuylle SH, Tenenbaum ED, Bouwman J, Linnartz H, Allamandola LJ (2012) Month Not R Astron Soc 423:1825

    Article  CAS  Google Scholar 

  17. Gudipati MS, Allamandola LJ (2006) Astrophys J 638:286

    Article  CAS  Google Scholar 

  18. Bouwman J, Cuppen HM, Bakker A, Allamandola LJ, Linnartz H (2010) Astron Astrophy 511:A33

    Article  Google Scholar 

  19. Ricca A, Bakes ELO, Bauschlicher CW Jr (2007) Astrophys J 659:858

    Article  CAS  Google Scholar 

  20. Nuevo M, Milam SN, Sandford SA (2012) Astrobiology 12:295

    Article  CAS  Google Scholar 

  21. Elsila JE, Hammond MR, Bernstein MP, Sandford SA, Zare RN (2006) Meteorit Planet Sci 41:785

    Article  CAS  Google Scholar 

  22. Nuevo M, Auger G, Blanot D, D’Hendecourt L (2008) Orig Life Evol Biosph 38:37

    Article  CAS  Google Scholar 

  23. Chen YJ, Nuevo M, Yih TS, Ip WH, Fung HS, Cheng CY, Tsai HR, Wu CYR (2008) Month Not R Astron Soc 384:605

    Article  CAS  Google Scholar 

  24. Hughes G (1973) Radiation chemistry. Clarendon Press, Oxford

    Google Scholar 

  25. Bowey JE, Adamson AJ, Whittet DCB (1998) Month Not R Astron Soc 298:131

    Article  CAS  Google Scholar 

  26. Iglesias-Groth S, Garcıa-Hernandez DA, Cataldo F, Manchado A (2012) Month Not R Astron Soc 423:2868

    Article  CAS  Google Scholar 

  27. Woods RJ, Pikaev AK (1994) Applied radiation chemistry. Wiley, New York, p. 186, 252

  28. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman Spectroscopy. Academic Press, San Diego

    Google Scholar 

  29. Cataldo F, Heymann D (2000) Polym Degrad Stab 70:237

    Article  CAS  Google Scholar 

  30. Cataldo F (2002) Carbon 40:1457

    Article  CAS  Google Scholar 

  31. Tumanskii B, Kalina O (2001) Radical reactions of fullerenes and their derivatives. Kluwer, Dordrecht

    Google Scholar 

  32. Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler ER, Keizer PN, Morton JR, Preston KF (1991) Science 11:1183

    Article  Google Scholar 

  33. McEwen CN, McKay RG, Larsen BS (1992) J Am Chem Soc 114:4412

    Article  CAS  Google Scholar 

  34. Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) (2008) Radiation chemistry from basics to applications in materials and life sciences, Chaps 1 and 4. EDP Sciences, Les Ulis

    Google Scholar 

  35. Kadish KM, Ruoff RS (eds) (2000) Fullerenes: chemistry, physics and technology., 5Wiley, New York

    Google Scholar 

  36. Hirsch A (1994) The chemistry of fullerenes. Thieme, Stuttgart, p 30

    Book  Google Scholar 

  37. Cataldo F, Strazzulla G, Iglesias-Groth S (2009) Month Not R Astron Soc 394:615

    Article  CAS  Google Scholar 

  38. Teolis BD, Loeffler MJ, Raut U, Famá M, Baragiola RA (2006) Astrophys J 644:L141

    Article  CAS  Google Scholar 

  39. Cooper PD, Moore MH, Hudson RL (2008) Icarus 294:379

    Article  Google Scholar 

  40. Oba Y, Watanabe N, Kouchi A, Hama T, Pirronello V (2011) Phys Chem Chem Phys 13:15792

    Article  CAS  Google Scholar 

  41. Smith RG, Charnley SB, Pendleton YJ, Wright CM, Maldoni MM, Robinson G (2011) Astrophys J 743:131

    Article  Google Scholar 

  42. Cataldo F (2003) Fuller Nanotub Carbon Nanostruct 11:105

    Article  CAS  Google Scholar 

  43. Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Environ Sci Technol 42:4175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research work has been supported by grant AYA2007-64748 Expte. NG-014-10 of the Spanish Ministerio de Ciencia e Innovacion. The National Center for Astronomy, KACST, Saudi Arabia is also gratefully acknowledged for a partial support of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cataldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias-Groth, S., Hafez, Y., Angelini, G. et al. γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: relevance of fullerene fate in ices of interstellar medium. J Radioanal Nucl Chem 298, 1073–1083 (2013). https://doi.org/10.1007/s10967-013-2484-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2484-0

Keywords

Navigation