Skip to main content
Log in

Mass spectrometric analysis of selected radiolyzed amino acids in an astrochemical context

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A selection of amino acids, namely arginine, proline and tyrosine previously irradiated to 3.2 mega-Gray in the solid state and analyzed by differential scanning calorimetry (DSC) and optical rotatory dispersion (ORD) were analyzed in the present work by mass spectrometry with the purpose to identify the radiolysis products and validate the results obtained previously with DSC and ORD. The radiolysis of amino acids is a top-down approach of a research program designed to assess the radiolysis resistance of these molecules for 4.6 × 109 years once buried in primitive bodies of the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Miller SL, Oró J (1981) J Mol Evol 17:263

    Article  CAS  Google Scholar 

  2. Urey HC (1952) Proc Natl Acad Sci USA 38:351

    Article  CAS  Google Scholar 

  3. Urey HC (1955) Proc Natl Acad Sci USA 41:127

    Article  CAS  Google Scholar 

  4. Urey HC (1956) Proc Natl Acad Sci USA 42:889

    Article  CAS  Google Scholar 

  5. Kohman TP (1997) J Radioanal Nucl Chem 219:165

    Article  CAS  Google Scholar 

  6. Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Rend Fis Acc Lincei 22:81

    Article  Google Scholar 

  7. Cataldo F, Angelini G, Iglesias-Groth S, Manchado A (2010) Radiat Phys Chem 80:57

    Article  Google Scholar 

  8. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010) J Radioanal Nucl Chem 287:573

    Article  Google Scholar 

  9. Cataldo F, Ragni P, Iglesias-Groth S, Manchado A (2010) J Radioanal Nucl Chem 287:903

    Article  Google Scholar 

  10. Iglesias-Groth S, Cataldo F, Ursini O, Manchado A (2011) Mon Not R Astron Soc 210:1447

    Google Scholar 

  11. Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP (2012) Chem Soc Rev 41:5459

    Article  CAS  Google Scholar 

  12. Cataldo F, Angelini G, Hafez Y, Iglesias-Groth S (2012) J Radioanal Nucl Chem 295:1235

    Article  Google Scholar 

  13. Cataldo F, Angelini G, Hafez Y, Iglesias-Groth S (2013) Life 3:449

    Article  CAS  Google Scholar 

  14. Anders E (1991) Space Sci Rev 56:157

    Article  Google Scholar 

  15. Sephton MA (2002) Nat Prod Rep 19:292

    Article  CAS  Google Scholar 

  16. Cronin JR, Pizzarello S (2000) In: Goodfriend GA, Collins MJ, Fogel ML, Macko SA, Wehmiller JF (eds) Chap 2, perspective in amino acid and protein geochemistry. Oxford University Press, Oxford

    Google Scholar 

  17. Pizzarello S, Cronin JR (2000) Geochim Cosmochim Acta 64:329

    Article  CAS  Google Scholar 

  18. Pizzarello S, Huang Y, Alexandre MR (2008) Proc Natl Acad Sci USA 105:3700

    Article  CAS  Google Scholar 

  19. Meierhenrich UJ (2008) Amino acids and the asymmetry of life. Springer, Berlin

    Google Scholar 

  20. Martins Z, Sephton MA (2009) In: Hughes AW (ed) Chapter 1, amino acids, peptides and proteins in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  21. Pizzarello S, Groy TL (2011) Geochim Cosmochim Acta 75:645

    Article  CAS  Google Scholar 

  22. Pizzarello S, Schrader DL, Monroe AA, Lauretta DS (2012) Proc Natl Acad Sci USA 109:11949

    Article  CAS  Google Scholar 

  23. Martins Z, Alexander CMO, Orzechowska GE, Fogel MI, Ehrenfreund P (2007) Meteorit Planet Sci 42:2125

    Article  CAS  Google Scholar 

  24. Pizzarello S, Shock E (2010) Cold Spring Harb Perspect Biol 2:a00210

    Article  Google Scholar 

  25. Kwok S (2009) Astrophys Space Sci 319:5

    Article  Google Scholar 

  26. Kwok S (2012) Organic matter in the universe. Wiley, Weinheim

    Google Scholar 

  27. Bonner W, Lemmon RM (1978) J Mol Evol 11:95

    Article  CAS  Google Scholar 

  28. Bonner W, Lemmon RM (1987) Bioorg Chem 7:175

    Article  Google Scholar 

  29. Bonner WA, Blair NE, Lemmon RM (1979) Origins Life Evol Biosph 9:279

    Article  CAS  Google Scholar 

  30. Bonner W, Liang Y (1984) J Mol Evol 21:84

    Article  CAS  Google Scholar 

  31. Bonner WA (1999) Radiat Res 152:83

    Article  CAS  Google Scholar 

  32. Kminek G, Bada JL (2006) Earth Planet Sci Lett 245:1

    Article  CAS  Google Scholar 

  33. Jennings KR (2000) Int J Mass Spectrom 200:479

    Article  CAS  Google Scholar 

  34. Berthold A, Liu Y, Bagwill C, Armstrong DW (1996) J Chromatogr A 731:123

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor G. Angelini for helpful and lively discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ornella Ursini or Franco Cataldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherubini, C., Ursini, O., Cataldo, F. et al. Mass spectrometric analysis of selected radiolyzed amino acids in an astrochemical context. J Radioanal Nucl Chem 300, 1061–1073 (2014). https://doi.org/10.1007/s10967-014-3078-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3078-1

Keywords

Navigation