Skip to main content
Log in

Sorption of technetium on glutaraldehyde crosslinked chitosan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Crosslinked chitosan can potentially be used as a sorbent for removing pertechnetate anion \(^{ 9 9} {\text{TcO}}_{4}^{ - }\) from aqueous solutions. The chitosan was crosslinked with glutaraldehyde and prepared through chemical modification. The sorbent was characterized by BET-surface area and potentiometric titration. It was studied the influence of the contact time and the effect of pH on the sorption of pertechnetate anions. The selectivity for crosslinked chitosan for different cations with concentration above 1 × 10−3 mol dm−3 was in the order Fe3+ > Ca2+ > Na+ > Fe2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    Article  CAS  Google Scholar 

  2. Liang L, Gu B, Yin X (1966) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Technol 6:111–122

    Article  Google Scholar 

  3. Garcia-León M (2005) 99Tc in the environment: sources, distribution and methods. J Nucl Radiochem Sci 6:253–259

    Article  Google Scholar 

  4. Ishii N, Tagami K, Uchida S (2004) Physicochemical forms of technetium in surface water covering paddy and upland fields. Chemosphere 57:953–959

    Article  CAS  Google Scholar 

  5. Shi K (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20

    Article  CAS  Google Scholar 

  6. Walton FB, Paquette J, Ross JPM, Lawrence WF (1986) Tc(IV) and Tc(VII) interactions with iron oxyhydroxides. Nucl Chem Waste Manag 6:121–126

    Article  CAS  Google Scholar 

  7. Cundy AB, Hopkinson I, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–50

    Article  CAS  Google Scholar 

  8. Misaelides P (2011) Application of natural zeolites in environmental remediation: a review. Microporous Mezoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  9. Li D, Kaplan DI, Knox AS, Crapse KP, Diprete DP (2014) Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents. J Environ Radioact 136:56–63

    Article  CAS  Google Scholar 

  10. Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–513

    Article  CAS  Google Scholar 

  11. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  12. Pratt DY, Wilson LD, Kozinski JA (2013) Preparation and sorption studies of glutaraldehyde cross-linked chitosan copolymers. J Coll Interface Sci 395:205–211

    Article  CAS  Google Scholar 

  13. Miretzsky P, Cirell AF (2009) Hg(II) removal from water by chitosan and chitosan derivates: a review. J Hazard Mater 167:10–23

    Article  Google Scholar 

  14. Cheng ZH, Liu XS, Han M, Ma W (2010) Adsorption kinetics character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution. J Hazard Mater 182:408–415

    Article  CAS  Google Scholar 

  15. Zhou LM, Xz JP, Liang XZ, Liu ZR (2010) Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater 182:518–524

    Article  CAS  Google Scholar 

  16. Havelcová M, Mizera J, Machovič V, Přibyl O, Borecká L, Krausová I (2011) Sorbent based on humic substances and chitosan. Chem Listy 105:913–917

    Google Scholar 

  17. Liu Q, Zhang L, Yang B, Huang R (2015) Removal of fluoride from aqueous solution using Zr(IV) immobilized cross-linked chitosan. Int J Biol Macromol 77:15–23

    Article  CAS  Google Scholar 

  18. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  19. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  20. Solovtsova OV, Yu Grankina T, Krasiľnikova OK, Serebryakova NV, Shinkarev SM, Voloshchuk AM (2008) The effect of the dehydration conditions of chitosan-based polymeric adsorbents on the adsorption of nickel cations. J Colloid 70:341–348

    Article  CAS  Google Scholar 

  21. Swayampakula K, Boddu VM, Nadavala SK, Abburi K (2009) Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J Hazard Mater 170:680–689

    Article  CAS  Google Scholar 

  22. Chen A, Yang Ch, Chen Ch (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068–1075

    Article  CAS  Google Scholar 

  23. Mohamed KR, El-Rashidy ZM, Salama AA (2011) In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37:3265–3271

    Article  CAS  Google Scholar 

  24. Wang JL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  25. Hasan S, Ghosh TK, Viswanath DS, Boddu VM (2008) Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. J Hazard Mater 152:826–837

    Article  CAS  Google Scholar 

  26. Sankararamakrishnan N, Sharma AK, Sanghi R (2007) Novel chitosan derivate for the removal of cadmium in the presence of cyanide from electroplating wastewater. J Hazard Mater 148:353–359

    Article  CAS  Google Scholar 

  27. Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA particles. Int J Biol Macromol 61:251–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grantmladýukč.UK/245/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Galamboš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivarčiová, L., Rosskopfová, O., Galamboš, M. et al. Sorption of technetium on glutaraldehyde crosslinked chitosan. J Radioanal Nucl Chem 309, 1251–1256 (2016). https://doi.org/10.1007/s10967-016-4742-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4742-4

Keywords

Navigation