Skip to main content
Log in

Effect of Complex-Former Ion Concentration on the Selectivity of Metal Ion Sorption on Cross-Linked N-2-Sulfoethylchitosan

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper(II), silver(I), cobalt(II), nickel(II), zinc(II), manganese(II), and magnesium(II) sorption isotherms on cross-linked sulfoethylated chitosan with the degree of sulfoethylation DS = 0.7 (SEC 0.7) have been plotted for the individual or collective presence of these ions in solution have been constructed. The capacities of the studied sorbents for the studied metal ions have been calculated by processing the sorption isotherms. SEC 0.7 is found to have the greatest affinity to copper(II) and silver(I); their presence almost completely suppresses the sorption of associated metal ions. The Redlich–Peterson model gives the best fit to the sorption isotherms for collectively present metal ions, indicating the chemical inhomogeneity of the sorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Pyatnitskii and V. V. Sukhan, The Analytical Chemistry of Silver (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. V. G. Khukhryanskii, The Chemistry of Biogenic Elements (Vyshcha shkola, Kiev, 1990) [in Russian].

    Google Scholar 

  3. A. V. Skal’nyi, Chemical Elements in Human Physiology and Ecology (Oniks, Moscow) [in Russian].

  4. A. V. Pestov, Yu. S. Petrova, A. V. Bukharova, et al., Russ. J. Appl. Chem. 86, 269 (2013). doi 10.1134/S1070427213020225

    Article  CAS  Google Scholar 

  5. Yu. S. Petrova, A. V. Bukharova, L. K. Neudachina, et al., Polymer Sci., Ser. B 56, 429 (2014). doi 10.1134/S1560090414040083

    Google Scholar 

  6. Yu. S. Petrova, L. K. Neudachina, A. V. Mekhaev, et al., Carbohydr. Res. 112, 462 (2014). doi 10.1016/j.carbpol.2014.06.028

    Article  CAS  Google Scholar 

  7. Yu. S. Petrova, A. V. Pestov, M. K. Usoltseva, and L. K. Neudachina, J. Hazard. Mater. 299, 696 (2015). doi 10.1016/j.jhazmat.2015.08.001

    Article  CAS  Google Scholar 

  8. K. Y. Foo and B. H. Hameed, Chem. Eng. J. 156, 2 (2010) http://dx.doi.org/doi 10.1016/j.cej.2009.09.013.

    Article  CAS  Google Scholar 

  9. G. Limousin, J.-P. Gaudet, L. Charlet, et al., Appl. Geochem. 22, 249 (2007). doi 10.1016/j.apgeochem. 2006.09.010

    Article  CAS  Google Scholar 

  10. O. Redlich and D. L. Peterson, J. Phys. Chem. 63, 1024 (1959). doi 10.1021/j150576a611

    Article  CAS  Google Scholar 

  11. H. Irving and R. J. P. Williams, J. Chem. Soc., 3192 (1953). doi 10.1039/JR9530003192

  12. Yu. S. Petrova, A. V. Pestov, and L. K. Neudachina, Sep. Sci. Technol. 51, 1437 (2016). http://dx.doi.org/ doi 10.1080/01496395.2016.1157085.

    CAS  Google Scholar 

  13. Z. Modrzejewska, React. Funct. Polym. 73, 719 (2013). doi 10.1016/j.reactfunctpolym.2013.02.014

    Article  CAS  Google Scholar 

  14. W. S. Wan Ngah, C. S. Endud, and R. Mayanar, React. Funct. Polym. 50, 181 (2013). doi 10.1016/S1381-5148(01)00113-4

    Article  Google Scholar 

  15. A.-H. Chen, S.-C. Liu, C.-Y. Chen, et al., J. Hazard. Mater. 154, 184 (2008). doi 10.1016/j.jhazmat. 2007.10.009

    Article  CAS  Google Scholar 

  16. Z. Cao, H. Ge, and S. Lai, Eur. Polym. J. 37, 2141 (2001). doi 10.1016/S0014-3057(01)00070-2

    Article  CAS  Google Scholar 

  17. X. Wang, Y. Li, H. Li, et al., Carbohyd. Polym. 146, 274 (2016). doi 10.1016/j.carbpol.2016.03.055

    Article  CAS  Google Scholar 

  18. S. Yu. Bratskaya, Yu. A. Azarova, E. G. Matochkina, et al., Carbohyd. Polym. 87, 869 (2012). doi 10.1016/j.carbpol.2011.08.081

    Article  CAS  Google Scholar 

  19. X. Song, C. Li, R. Xu, and K. Wang, Ind. Eng. Chem. Res. 51, 11261 (2012). doi 10.1021/ie3010989

    Article  CAS  Google Scholar 

  20. M. Zhang, R. Helleur, and Y. Zhang, Carbohyd. Polym. 130, 206 (2015). doi 10.1016/j.carbpol.2015.05.038

    Article  CAS  Google Scholar 

  21. Yu. S. Petrova and L. K. Neudachina, Russ. J. Inorg. Chem. 59, 907 (2014). doi 10.1134/S0036023614080166

    Article  CAS  Google Scholar 

  22. N. Horzum, E. Boyaci, A. E. Eroglu, et al., Biomacromolecules 11, 3301 (2010). doi 10.1021/bm100755x

    Article  CAS  Google Scholar 

  23. Ch. Mao, S. A. Imtiaz, and Y. Zhang, J. Appl. Polym. Sci. 132, 1 (2015). doi 10.1002/app.42717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Petrova.

Additional information

Original Russian Text © Yu.S. Petrova, L.K. Neudachina, M.Yu. Oseeva, A.V. Pestov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 3, pp. 375–381.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, Y.S., Neudachina, L.K., Oseeva, M.Y. et al. Effect of Complex-Former Ion Concentration on the Selectivity of Metal Ion Sorption on Cross-Linked N-2-Sulfoethylchitosan. Russ. J. Inorg. Chem. 63, 400–405 (2018). https://doi.org/10.1134/S003602361803018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361803018X

Navigation