Skip to main content

Advertisement

Log in

Influence of functionalised lignin on strength and antioxidant properties of polylactic acid films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Currently, it is challenging to make biodegradable polylactic acids (PLA) composite films which possess high strength and toughness. To achieve the same, Lignin is unrivalled reinforcing filler which can be used in the bioplastic because of its high mechanical strength and antioxidant properties. Here, lignin has been in situ polymerized with L-lactic acid to create lignin grafted polylactic acid co-polymers which have been later combined with PLA matrix to prepare composites films with improved properties. Various analysis techniques i.e. C13 NMR, 1H NMR, and FTIR were conducted on lignin grafted lactic acid copolymer which confirmed the presence of ester linkages between lignin and lactic acid. The findings show that a modest quantity of filler can increase crystallinity, while lowering glass transition temperature and cold crystallization temperature. Additionally, the PLA composite film with 12% filler content exhibited 26.4 MPa tensile strength with 17.91% elongation at break and 1.4 GPa Young’s modulus. The films also demonstrated strong antioxidant qualities done through radical scavenging, making them quite viable in packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Mo X (2013) Doxorubicin-loaded electrospun poly (L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B 1(36):4601–4611

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W (2022) PLA composites reinforced with rice residues or glass fiber—A review of mechanical properties, thermal properties, and biodegradation properties. J Polym Res 29(10):422

    Article  CAS  Google Scholar 

  3. Liu Z, Luo Y, Bai H, Zhang Q, Fu Q (2016) Remarkably enhanced impact toughness and heat resistance of poly (L-lactide)/thermoplastic polyurethane blends by constructing stereocomplex crystallites in the matrix. ACS Sustainable Chemistry & Engineering 4(1):111–120

    Article  Google Scholar 

  4. Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    Article  CAS  PubMed  Google Scholar 

  5. Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22(31):15732–15739

    Article  CAS  Google Scholar 

  6. Kai D, Ren W, Tian L, Chee PL, Liu Y, Ramakrishna S, Loh XJ (2016) Engineering poly (lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chemistry & Engineering 4(10):5268–5276

    Article  CAS  Google Scholar 

  7. Liu R, Dai L, Hu LQ, Zhou WQ, Si CL (2017) Fabrication of high-performance poly (l-lactic acid)/lignin-graft-poly (d-lactic acid) stereocomplex films. Mater Sci Eng, C 80:397–403

    Article  CAS  Google Scholar 

  8. Liu W, Qiu J, Chen T, Fei M, Qiu R, Sakai E (2019) Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly (lactic acid) biocomposites. Compos Sci Technol 181:107709

    Article  CAS  Google Scholar 

  9. De Geyter N, Morent R, Desmet T, Trentesaux M, Gengembre L, Dubruel P, Payen E (2010) Plasma modification of polylactic acid in a medium pressure DBD. Surf Coat Technol 204(20):3272–3279

    Article  Google Scholar 

  10. Hiljanen-Vainio M, Karjalainen T, Seppälä J (1996) Biodegradable lactone copolymers I. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. J Appl Polym Sci 59(8):1281–1288

    Article  CAS  Google Scholar 

  11. Xu D, Qian S, Zhang F, Tong G, Ren H (2018) Preparation of Composite Films of Methacryloyl-modified Lignocresol and Polylactic Acid. BioResources 13(1):740–751

    CAS  Google Scholar 

  12. Agrawal R, Kumar A, Singh S, Sharma K (2022) Recent advances and future perspectives of lignin biopolymers. J Polym Res 29(6):222

    Article  CAS  Google Scholar 

  13. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos A Appl Sci Manuf 42(11):1710–1718

    Article  Google Scholar 

  14. El Mansouri NE, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24(1):8–16

    Article  Google Scholar 

  15. Numan-Al-Mobin AM, Kolla P, Dixon D, Smirnova A (2016) Effect of water–carbon dioxide ratio on the selectivity of phenolic compounds produced from alkali lignin in sub-and supercritical fluid mixtures. Fuel 185:26–33

    Article  CAS  Google Scholar 

  16. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1):39–48

    Article  CAS  Google Scholar 

  17. Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers 1–63

    Google Scholar 

  18. Sharma S, Sharma A, Mulla SI, Pant D, Sharma T, Kumar A (2020) Lignin as potent industrial biopolymer: An introduction. Lignin. Springer, Cham, pp 1–15

    Chapter  Google Scholar 

  19. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  Google Scholar 

  20. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering 2(5):1072–1092

    Article  CAS  Google Scholar 

  21. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos B Eng 69:342–349

    Article  CAS  Google Scholar 

  22. Yang W, Xiao L, Ding H, Xu P, Weng Y, Ma P (2021) Fabrication of UV-and Heat-Resistant PDLA/PLLA-g-Nanolignin Composite Films by Constructing Interfacial Stereocomplex Crystallites. ACS Sustainable Chemistry & Engineering 9(47):15875–15883

    Article  CAS  Google Scholar 

  23. Yang W, Weng Y, Puglia D, Qi G, Dong W, Kenny JM, Ma P (2020) Poly (lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102–110

    Article  CAS  PubMed  Google Scholar 

  24. Wang N, Zhang C, Weng Y (2021) Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci 138(15):50199

    Article  CAS  Google Scholar 

  25. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338

    Article  CAS  Google Scholar 

  26. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701

    Article  CAS  Google Scholar 

  27. Zhu G, Wang F, Tan H, Gao Q, Liu Y (2012) Properties study of poly (L-lactic acid)/polyurethane-blend film. Polym-Plast Technol Eng 51(15):1562–1566

    Article  CAS  Google Scholar 

  28. Kumar Singla R, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly (Lactic Acid)/ lignin-based biodegradable composites. Polym Plast Technol Eng 55:475–485

    Article  CAS  Google Scholar 

  29. Gazzotti S, Rampazzo R, Hakkarainen M, Bussini D, Ortenzi MA, Farina H, Silvani A (2019) Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Compos Sci Technol 171:94–102

    Article  CAS  Google Scholar 

  30. Zuo Y, Li W, Li P, Liu W, Li X, Wu Y (2018) Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization. Ind Crops Prod 123:646–653

    Article  CAS  Google Scholar 

  31. Khan GA, Haque MA, Terano M, Alam MS (2014) Graft polycondensation of microfibrillated jute cellulose with oligo (l-lactic acid) and its properties. J Appl Polym Sci 131(8)

    Article  Google Scholar 

  32. Dick TA, Couve J, Gimello O, Mas A, Robin JJ (2017) Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly (L-lactide) composites. Polymer 118:280–296

    Article  Google Scholar 

  33. Kumar A, Tumu VR, Chowdhury SR, SVS, R. R. (2019) A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. Int J Biol Macromol 121:588–600

    Article  CAS  PubMed  Google Scholar 

  34. Sheng K, Zhang S, Qian S, Lopez CAF (2019) High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char. Compos B Eng 165:174–182

    Article  CAS  Google Scholar 

  35. Huang Y, Cai C, Wei Z, Wang P, Deng L, Wang Y, Fu Y (2021) Biobased “rigid-to-stretchable” conversion for strong and tough poly (lactic acid) with UV-protective property. J Mater Process Technol 292:117052

    Article  CAS  Google Scholar 

  36. Patwa R, Saha N, Sáha P, Katiyar V (2019) Biocomposites of poly (lactic acid) and lactic acid oligomer-grafted bacterial cellulose: It’s preparation and characterization. J Appl Polym Sci 136(35):47903

    Article  Google Scholar 

  37. Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polymer J 71:126–139

    Article  CAS  Google Scholar 

  38. Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd Polym 111:442–448

    Article  CAS  Google Scholar 

  39. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  40. Hasan MS, Ahmed I, Parsons AJ, Walker GS, Scotchford CA (2013) The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. J Mech Behav Biomed Mater 28:1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge TEQIP-III (MHRD, Govt of India) Dr S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh for their financial support. Preeti Beniwal acknowledge Jawahar Lal Nehru Memorial Fund grant for financial support and contingency.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Pal Toor.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniwal, P., Guliani, D. & Toor, A.P. Influence of functionalised lignin on strength and antioxidant properties of polylactic acid films. J Polym Res 31, 68 (2024). https://doi.org/10.1007/s10965-024-03912-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03912-w

Keywords

Navigation