Skip to main content
Log in

Alkylated lignin with graft copolymerization for enhancing toughness of PLA

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A green modification method for effectively enhancing toughness of PLA was established. Herein, alkaline lignin (LG) was firstly alkylated with dodecane, and then grafted with lactide (LA). The alkylated lignin-lactide graft copolymer (GLG-g-LA) was obtained via ring-opening polymerization (ROP). GLG-g-LA copolymer can be utilized as a functional filler to toughen polylactic acid (PLA) packaging film. The 31P-NMR of alkylated lignin (GLG) demonstrated that the peak of phenolic hydroxyl groups disappeared completely, while the relative peak intensity of carboxyl hydroxyl groups decreased significantly. The grafting rate of GLG-g-LA copolymer was improved more than twice times compared with lignin-lactide graft copolymer (LG-g-LA). Then LG-g-LA and GLG-g-LA copolymer were mixed with PLA to prepare different PLA composite films via casting method, respectively. Particularly, the elongation at break of PLA/GLG-g-LA2 composite film increased to 41.98%, which was more than 20 times higher than PLA. In general, PLA/GLG-g-LA composite film with toughness, excellent UV barrier, water resistance and controllable gas permeation could be used as high-performance and biodegradable materials in packaging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Guilhen A, Gadioli R, Fernandes FC, Waldman WR, Aurelio De Paoli M (2017) High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant. J Appl Polym Sci 134:45219. https://doi.org/10.1002/app.45219

    Article  CAS  Google Scholar 

  2. Bužarovska A, Blazevska-Gilev J, Pérez-Martnez BT et al (2021) Poly(l-lactic acid)/alkali lignin composites: properties, biocompatibility, cytotoxicity and antimicrobial behavior. J Mater Sci 56:13785–13800. https://doi.org/10.1007/s10853-021-06185-6

    Article  CAS  Google Scholar 

  3. Xia L, Li X, Pan N, Yu H, Wang E (2020) Novel green and cost-effective preparation of acetylated lignin at high temperature without further separation. Mater Res Expr 7:115401. https://doi.org/10.1088/2053-1591/abc652

    Article  CAS  Google Scholar 

  4. Bian H, Chen L, Dong M et al (2021) Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance. Int J Biol Macromol 166:1578–1585. https://doi.org/10.1016/j.ijbiomac.2020.11.037

    Article  CAS  Google Scholar 

  5. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod 33:259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  CAS  Google Scholar 

  6. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  7. Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

    Article  CAS  Google Scholar 

  8. Chai H, Chang Y, Zhang Y et al (2020) The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. Int J Biol Macromol 155:1578–1588. https://doi.org/10.1016/j.ijbiomac.2019.11.135

    Article  CAS  Google Scholar 

  9. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  Google Scholar 

  10. Zhang N, Wang Q, Ren J, Wang L (2009) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256. https://doi.org/10.1007/s10853-008-3049-4

    Article  CAS  Google Scholar 

  11. Nyambo C, Misra M, Mohanty AK (2012) Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J Mater Sci 47:5158–5168. https://doi.org/10.1007/s10853-012-6393-3

    Article  CAS  Google Scholar 

  12. Feng J, Ma Z, Xu Z et al (2022) A Si-containing polyphosphoramide via green chemistry for fire-retardant polylactide with well-preserved mechanical and transparent properties. Chem Eng J 431:134259. https://doi.org/10.1016/j.cej.2021.134259

    Article  CAS  Google Scholar 

  13. Zhang Y, Jing J, Liu T et al (2021) A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chem Eng J 411:128493. https://doi.org/10.1016/j.cej.2021.128493

    Article  CAS  Google Scholar 

  14. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425. https://doi.org/10.1002/app.30308

    Article  CAS  Google Scholar 

  15. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys 49:1051–1083. https://doi.org/10.1002/polb.22283

    Article  CAS  Google Scholar 

  16. Wang D, Wang Y, Wang W et al (2020) Modified alkaline lignin for ductile polylactide composites. Compos Commun 22:100501. https://doi.org/10.1016/j.coco.2020.100501

    Article  Google Scholar 

  17. Mu CY, Xue LY, Zhu J, Jiang M, Zhou ZW (2014) Mechanical and thermal properties of toughened poly(L-lactic) acid and lignin blends. BioResources 9:5557–5566.

    Article  Google Scholar 

  18. Ding H, Yang W, Yu W et al (2021) High hydrophobic poly(lactic acid) foams impregnating one-step Si–F modified lignin nanoparticles for oil/organic solvents absorption. Compos Commun 25:100730. https://doi.org/10.1016/j.coco.2021.100730

    Article  Google Scholar 

  19. Jun Zhu LX, Wei W, Chunyu Mu, Jiang M, Zhou Z (2015) Modification of lignin with silane coupling agent to improve the interface of poly(L-lactic) acid/lignin composites. BioResources 10:4315–4325. https://doi.org/10.15376/biores.10.3.4315-4325

    Article  Google Scholar 

  20. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002

    Article  CAS  Google Scholar 

  21. Gordobil O, Delucis R, Egüés I, Labidi J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crops Prod 72:46–53. https://doi.org/10.1016/j.indcrop.2015.01.055

    Article  CAS  Google Scholar 

  22. Kim Y, Suhr J, Seo H-W et al (2017) All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid). Sci Rep 7:43596. https://doi.org/10.1038/srep43596

    Article  Google Scholar 

  23. Chile L-E, Kaser SJ, Hatzikiriakos SG, Mehrkhodavandi P (2018) Synthesis and thermorheological analysis of biobased lignin-graft-poly(lactide) copolymers and their blends. ACS Sustain Chem Eng 6:1650–1661. https://doi.org/10.1021/acssuschemeng.7b02866

    Article  CAS  Google Scholar 

  24. Yang H, Shi B, Xue Y et al (2021) Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites. Biomacromol 22:1432–1444. https://doi.org/10.1021/acs.biomac.0c01656

    Article  CAS  Google Scholar 

  25. Chung Y-L, Olsson JV, Li RJ et al (2013) A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238. https://doi.org/10.1021/sc4000835

    Article  CAS  Google Scholar 

  26. Sun Y, Ma Z, Xu X et al (2020) Grafting lignin with bioderived polyacrylates for low-cost, ductile, and fully biobased poly(lactic acid) composites. ACS Sustain Chem Eng 8:2267–2276. https://doi.org/10.1021/acssuschemeng.9b06593

    Article  CAS  Google Scholar 

  27. Messmer NR, Guerrini LM, Oliveira MP (2018) Effect of unmodified kraft lignin concentration on the emulsion and miniemulsion copolymerization of styrene with n -butyl acrylate and methacrylic acid to produce polymer hybrid latex. Polym Adv Technol 29:1094–1106. https://doi.org/10.1002/pat.4221

    Article  CAS  Google Scholar 

  28. Park SY, Kim JY, Youn HJ, Choi JW (2019) Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting. Int J Biol Macromol 138:1029–1034. https://doi.org/10.1016/j.ijbiomac.2019.07.157

    Article  CAS  Google Scholar 

  29. Guofu Qin YL, Yin F, Xin Hu, Zhu N, Guo K (2020) Grafting modification of lignin via ring-opening polymerization. Prog Chem 32:1547–1556. https://doi.org/10.7536/PC200225

    Article  Google Scholar 

  30. Kai D, Ren W, Tian L et al (2016) Engineering poly(lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustain Chem Eng 4:5268–5276. https://doi.org/10.1021/acssuschemeng.6b00478

    Article  CAS  Google Scholar 

  31. Ren W, Pan X, Wang G, Cheng W, Liu Y (2016) Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chem 18:5008–5014. https://doi.org/10.1039/c6gc01341d

    Article  CAS  Google Scholar 

  32. Pepijn Prinsen AN, Hartog AF, Wever R, Rothenberg G (2017) Dissolving lignin in water through enzymatic sulfation with aryl sulfotransferase. Chemsuschem 10:1–8. https://doi.org/10.1002/cssc.201700376

    Article  CAS  Google Scholar 

  33. Sun S, Huang Y, Sun R, Tu M (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem 18:4276–4286. https://doi.org/10.1039/c6gc00685j

    Article  CAS  Google Scholar 

  34. Yang W, YunxuanWeng DeboraPuglia et al (2020) Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102–110. https://doi.org/10.1016/j.ijbiomac.2019.12.085

    Article  CAS  Google Scholar 

  35. Sun M, Huang S, Yu M, Han K (2021) Toughening modification of polylactic acid by thermoplastic silicone polyurethane elastomer. Polymers (Basel) 13:1953. https://doi.org/10.3390/polym13121953

    Article  CAS  Google Scholar 

  36. Atz Dick T, Couve J, Gimello O, Mas A, Robin J-J (2017) Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly( l -lactide) composites. Polymer 118:280–296. https://doi.org/10.1016/j.polymer.2017.04.036

    Article  CAS  Google Scholar 

  37. Valapa RB, Pugazhenthi G, Katiyar V (2015) Fabrication and characterization of sucrose palmitate reinforced poly(lactic acid) bionanocomposite films. J Appl Polym Sci 132:89. https://doi.org/10.1002/app.41320

    Article  CAS  Google Scholar 

  38. King AW, Zoia L, Filpponen I et al (2009) In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using 31P NMR. J Agric Food Chem 57:8236–8243. https://doi.org/10.1021/jf901095w

    Article  CAS  Google Scholar 

  39. Alipoormazandarani N, Fatehi P (2020) Lignin-methyl methacrylate polymer as a hydrophobic multifunctional material. Ind Crops Prod 154:112728. https://doi.org/10.1016/j.indcrop.2020.112728

    Article  CAS  Google Scholar 

  40. Sharma S, Singh AA, Majumdar A, Butola BS (2019) Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. J Mater Sci 54:8971–8983. https://doi.org/10.1007/s10853-019-03521-9

    Article  CAS  Google Scholar 

  41. Gao H, Qiang T (2017) Fracture surface morphology and impact strength of cellulose/PLA composites. Materials (Basel) 10:624. https://doi.org/10.3390/ma10060624

    Article  CAS  Google Scholar 

  42. Liu H, Chen N, Shan P, Song P, Liu X, Chen J (2019) Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network. Macromolecules 52:15. https://doi.org/10.1021/acs.macromol.9b01398

    Article  CAS  Google Scholar 

  43. Feng J, Sun Y, Song P et al (2017) Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants. ACS Sustain Chem Eng 5:7894–7904. https://doi.org/10.1021/acssuschemeng.7b01430

    Article  CAS  Google Scholar 

  44. Xiong Z, Zhang Y, Du X, Song P, Fang Z (2019) Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng 7:8954–8963. https://doi.org/10.1021/acssuschemeng.9b01016

    Article  CAS  Google Scholar 

  45. Gil BM, Song SW, Lee JH, Jeon J, Lee KH, Wie JJ (2019) Introduction of primary chemical bonding in lignin-based PP composites for mechanical reinforcement via reactive extrusion. Compos B 165:510–515. https://doi.org/10.1016/j.compositesb.2019.02.014

    Article  CAS  Google Scholar 

  46. Qian M, Sun Y, Xu X et al (2017) 2D-alumina platelets enhance mechanical and abrasion properties of PA612 via interfacial hydrogen-bond interactions. Chem Eng J 308:760–771. https://doi.org/10.1016/j.cej.2016.09.124

    Article  CAS  Google Scholar 

  47. Yin W, Chen L, Lu F, Song P, Dai J, Meng L (2018) Mechanically robust, flame-retardant poly(lactic acid) biocomposites via combining cellulose nanofibers and ammonium polyphosphate. ACS Omega 3:5615–5626. https://doi.org/10.1021/acsomega.8b00540

    Article  CAS  Google Scholar 

  48. Quilez-Molina AI, Marini L, Athanassiou A, Bayer IS (2020) UV-blocking, transparent, and antioxidant polycyanoacrylate films. Polymers (Basel). https://doi.org/10.3390/polym12092011

    Article  Google Scholar 

  49. Rukmanikrishnan B, Ramalingam S, Rajasekharan SK, Lee J, Lee J (2020) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromol 153:55–62. https://doi.org/10.1016/j.ijbiomac.2020.03.016

    Article  CAS  Google Scholar 

  50. Zong Q, Xu A, Chai K, Zhang Y, Song Y (2020) Increased expansion ratio, cell density, and compression strength of microcellular poly(lactic acid) foams via lignin graft poly(lactic acid) as a biobased nucleating agent. Polym Adv Technol. https://doi.org/10.1002/pat.4944

    Article  Google Scholar 

  51. Li F, Zhang C, Weng Y (2020) Improvement of the gas barrier properties of PLA/OMMT films by regulating the interlayer spacing of OMMT and the crystallinity of PLA. ACS Omega 5:18675–18684. https://doi.org/10.1021/acsomega.0c01405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Project of Tianjin (20YDTPJC00830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Yunzhi or Zhang Zhengjian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work complies with the ethical rules applicable for this journal.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhao, M., Liu, G. et al. Alkylated lignin with graft copolymerization for enhancing toughness of PLA. J Mater Sci 57, 8687–8700 (2022). https://doi.org/10.1007/s10853-022-07101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07101-2

Navigation