Skip to main content
Log in

Poly(l-lactic acid)/alkali lignin composites: properties, biocompatibility, cytotoxicity and antimicrobial behavior

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, poly(L-lactic acid) (PLA)/low molar mass alkali lignin (aL) (1%, 5% and 10% w/w) composites were prepared primarily for a comprehensive understanding of the effect of aL on their antimicrobial properties, biocompatibility and cytotoxic behavior. The properties were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The mechanical, water vapor barrier properties and photodegradability were analyzed as well. The results showed a significant inhibiting effect of aL on the crystallization behavior of PLA, increased water barrier properties (up to 73%) and photodegradability. PLA/aL composites showed a tenfold reduction in Gram-positive bacteria viability, very good cellular response and very low cytotoxicity levels, thus validating these materials as non-cytotoxic and with high potential to be used as food packaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Beisl S, Friedl A, Miltner A (2017) Lignin from micro- to nanosize: applications. Int J Mol Sci 18:2367. https://doi.org/10.3390/ijms18112367

    Article  CAS  Google Scholar 

  2. Wang YY, Meng X, Pu Y, Ragauskas AJ (2020) Recent advances in the application of functionalized lignin in value-added polymeric materials. Polymers 12:2277. https://doi.org/10.3390/polym12102277

    Article  CAS  Google Scholar 

  3. Bertella S, Luterbacher JS (2020) Lignin functionalization for the production of novel materials. Trends Chem 2:440–452. https://doi.org/10.1016/j.trechm.2020.03.001

    Article  CAS  Google Scholar 

  4. Kun D, Pukánszky B (2017) Polymer/lignin blends: interactions, properties, applications. Eur Polym J 93:618–641. https://doi.org/10.1016/j.eurpolymj.2017.04.035

    Article  CAS  Google Scholar 

  5. Domenek D, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701. https://doi.org/10.1007/s10924-013-0570-6

    Article  CAS  Google Scholar 

  6. Witzler M, Alzagameem A, Bergs M, El Khaldi-Hansen B, Klein SE, Hielscher D, Kamm B, Kreyenschmidt J, Tobiasch E, Schulze M (2018) Lignin-derived biomaterials for drug release and tissue engineering. Molecules 23:1885. https://doi.org/10.3390/molecules23081885

    Article  CAS  Google Scholar 

  7. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001

    Article  CAS  Google Scholar 

  8. Abejón R, IPérez-Acebo H, Clavijo L (2018) Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes 6:98. https://doi.org/10.3390/pr6080098

    Article  Google Scholar 

  9. Saini P, Arora M, Ravi Kumar MNV (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59. https://doi.org/10.1016/j.addr.2016.06.014

    Article  CAS  Google Scholar 

  10. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747. https://doi.org/10.1016/j.progpolymsci.2013.05.010

    Article  CAS  Google Scholar 

  11. Corobea M, Vuluga Z, Florea D, Miculescu F, Voicu Ş (2017) Composites and nanocomposites based on polylactic acid. In: Handbook of composites from renewable materials. pp 327–360. https://doi.org/10.1002/9781119441632.ch160

  12. Rahman MA, De Santis D, Spagnoli G, Ramorino G, Penco M, Phuong VT, Lazzeri A (2013) Biocomposites based on lignin and plasticized poly(L-lactic acid). J Appl Polym Sci 129:202–214. https://doi.org/10.1002/app.38705

    Article  CAS  Google Scholar 

  13. Gordobil O, Egüéz I, Liano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002

    Article  CAS  Google Scholar 

  14. Thunga M, Chen K, Grewell D, Kessler M (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166. https://doi.org/10.1016/j.carbon.2013.10.075

    Article  CAS  Google Scholar 

  15. Vila C, Santos V, Saake B, Parajó JC (2016) Manufacture, characterization, and properties of poly-(lactic acid) and its blends with esterified pine lignin. BioRes 11:5322–5332. https://doi.org/10.15376/biores.11.2.5322-5332

    Article  CAS  Google Scholar 

  16. Ye H, Zhang Y, Yu Z (2017) Effect of desulfonation of lignosulfonate on the properties of poly(lactic acid)/lignin composites. BioRes 12:4810–4829. https://doi.org/10.15376/biores.12.3.4810-4829

    Article  CAS  Google Scholar 

  17. Gkartzou E, Koumoulos EP, Charitidis CA (2017) Production and 3D printing processing of bio-based thermoplastic filament. Manuf Rev 4:1. https://doi.org/10.1051/mfreview/2016020

    Article  CAS  Google Scholar 

  18. Musilova L, Mracek A, Kovalcik A, Smolka P, Minarik A, Humpolícek P, Vicha R, Ponizil P (2018) Hyaluronan hydrogels modified by glycinated Kraft lignin: morphology, swelling, viscoelastic properties and biocompatibility. Carbohydr Polym 181:394–403. https://doi.org/10.1016/j.carbpol.2017.10.048

    Article  CAS  Google Scholar 

  19. Aadil KR, Barapatre A, Jha H (2016) Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresour Bioprocess 3:27. https://doi.org/10.1186/s40643-016-0103-y

    Article  Google Scholar 

  20. Spiridon I, Tanase CE (2018) Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. Int J Biol Macromol 114:855–863. https://doi.org/10.1016/j.ijbiomac.2018.03.140

    Article  CAS  Google Scholar 

  21. Zhang Y, Jiang M, Zhang Y, Cao Q, Wang X, Han Y, Sun G, Li Y, Zhou J (2019) Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Mater Sci Eng C 104:110002. https://doi.org/10.1016/j.msec.2019.110002

    Article  CAS  Google Scholar 

  22. Fisher EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Coll Polym Sci 251:980–990. https://doi.org/10.1007/BF01498927

    Article  Google Scholar 

  23. ASTM E96/E93-12. Standard test methods for water vapor transmission of materials. Annual book of standards, Vol 04.06.1993

  24. Park C-W, Youe W-J, Kim S-J, Han S-Y, Park J-S, Lee E-A, Kwon G-J, Kim Y-S, Kim N-H, Lee S-H (2019) Effect of lignin plasticization on physico-mechanical properties of lignin/poly(lactic acid) composites. Polymers 11:2089. https://doi.org/10.3390/polym11122089

    Article  CAS  Google Scholar 

  25. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin. Polym Int 52:949–955. https://doi.org/10.1002/pi.1137

    Article  CAS  Google Scholar 

  26. Auras R, Lim LT, Susan E, Selke M, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and application. Wiley, New Jersey

    Book  Google Scholar 

  27. Furukawa T, Sato H, Murakami R, Zhang J, Noda I et al (2007) Comparison of miscibility and structure of poly (3-hydroxybutyrate-co-3- hydroxyhexanoate)/poly (l-lactic acid) blends with those of poly (3-hydroxybutyrate)/poly (l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer 48:749–1755. https://doi.org/10.1016/j.polymer.2007.01.020

    Article  CAS  Google Scholar 

  28. Abdelaziz OY, Hulteberg CP (2017) Physicochemical characterisation of technical lignins for their potential valorisation. Waste Biomass Valor 8:859–869. https://doi.org/10.1007/s12649-016-9643-9

    Article  CAS  Google Scholar 

  29. Agarwal UP, Atalla RH (2010) spectroscopy. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignins, advances in chemistry. CRC Press, Boca Raton, pp 103–136

    Chapter  Google Scholar 

  30. Mukherjee T, Tobin MJ, Lj P, Sani MA, Kao N, Gupta RK, Pannirselvam M, Bhattacharya QN, S, (2017) Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 24:1717–1729. https://doi.org/10.1007/s10570-017-1217-x

    Article  CAS  Google Scholar 

  31. Blomergen S, Holden D, Hamer G, Bluhm T, Marchessault R (1986) Studies of Composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871. https://doi.org/10.1021/ma00165a034

    Article  Google Scholar 

  32. Monticelli O, Bocchini S, Gardella L, Cavallo D, Cebe P, Germelli G (2013) Impact of synthetic talc on PLLA electrospun fibers. Europ Polym J 49:2572–2583. https://doi.org/10.1016/j.eurpolymj.2013.05.017

    Article  CAS  Google Scholar 

  33. Bitinis N, Fortunati E, Verdejo R, Armentano I, Torre L, Kenny JM, Lopez-Manchado MA (2014) Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Appl Clay Sci 93–94:78–84. https://doi.org/10.1016/j.clay.2014.02.024

    Article  CAS  Google Scholar 

  34. Chen X, Kalish J, Hsu S (2011) Structure evolution of α′-phase poly(lactic acid). J Polym Sci B-Polym Phys 49:1446–1454. https://doi.org/10.1002/polb.22327

    Article  CAS  Google Scholar 

  35. Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym Plast Technol Eng 55:475–485. https://doi.org/10.1080/03602559.2015.1098688

    Article  CAS  Google Scholar 

  36. Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly (L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41:4296–4304. https://doi.org/10.1021/ma800343g

    Article  CAS  Google Scholar 

  37. Ouyang W, Huang Y, Luo H, Wang D (2012) Poly (lactic acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology evaluation. J Polym Environ 20:1–9. https://doi.org/10.1007/s10924-011-0359-4

    Article  CAS  Google Scholar 

  38. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering. Compos Part B Eng 69:342–349. https://doi.org/10.1016/j.compositesb.2014.10.006

    Article  CAS  Google Scholar 

  39. Park CW, Youe WJ, Namgung HW, Han SY, Seo PN, Chae HM, Lee SH (2018) Effect of lignocellulose nanofibril and polymeric methylene diphenyl diisocyanate addition on plasticized lignin/polycaprolactone composites. BioRes 13:6802–6817. https://doi.org/10.15376/biores.13.3.6802-6817

    Article  CAS  Google Scholar 

  40. Kim Y, Suhr J, Seo H-W, Sun H, Kim S, Park IK, Kim S-H, Lee Y, Kim K-J, Nam J-D (2017) All Biomass and UV protective composites composed of compatibilized lignin and Poly(Lactic acid). Sci Rep 7:43596. https://doi.org/10.1038/srep43596

    Article  Google Scholar 

  41. Gilormini P, Verdu J (2018) On the role of hydrogen bonding on water absorption polymers. Polymer 142:164–169. https://doi.org/10.1016/j.polymer.2018.03.033

    Article  CAS  Google Scholar 

  42. Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop N (2012) Influence of lignin content on photodegradation in wood/HDPE composites under UV weathering. BioRes 7:38–55

    CAS  Google Scholar 

  43. Lekelefac CA, Busse N, Herrenbauer M, Czermak P (2015) Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy 2015:137634. https://doi.org/10.1155/2015/137634

    Article  CAS  Google Scholar 

  44. Buzarovska A (2013) PLA nano composites with functionalized TiO2 nanoparticles. Polym Plast Technol Eng 52:280–286. https://doi.org/10.1080/03602559.2012.751411

    Article  CAS  Google Scholar 

  45. Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crops Prod 34:1629–1634. https://doi.org/10.1016/j.indcrop.2011.06.002

    Article  CAS  Google Scholar 

  46. Kai D, Ren W, Tian L, Chee PL, Liu Y, Ramakrishna S, Loh XJ (2016) Engineering poly(lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustain Chem Eng 4:5268–5276. https://doi.org/10.1021/acssuschemeng.6b00478

    Article  CAS  Google Scholar 

  47. Rocca DM, Vanegas JP, Fournier K, Becerra MC, Scaiano JC, Lanterna AE (2018) Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Adv 8:40454–40463. https://doi.org/10.1039/c8ra08169g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bužarovska.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: Lisa White.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bužarovska, A., Blazevska-Gilev, J., Pérez-Martnez, B.T. et al. Poly(l-lactic acid)/alkali lignin composites: properties, biocompatibility, cytotoxicity and antimicrobial behavior. J Mater Sci 56, 13785–13800 (2021). https://doi.org/10.1007/s10853-021-06185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06185-6

Navigation