Skip to main content
Log in

Novel one-pot synthesis of polymeric hydrogels based on isocyanate click chemistry: Structural and functional characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a novel one-pot synthesis of polymeric hydrogels (HGs) based on isocyanate click chemistry is proposed and evaluated. In particular, the proposed synthetic route allows to easily and effectively obtain HGs with different types of carbonyl groups, such as urea, urethane, thiourethane, and amide groups, as an approach to impact and modulate the structural, thermal, and functional behavior of the crosslinked networks. To carry out the above, the proposed methodology was employed to prepare HGs from hexamethylene diisocyanate, sorbitol, L-cysteine ​​and water, under moderate conditions (60° C for 24 h). Using FTIR-ATR, FEDS, and solid-state 13C CP/MAS NMR, it was possible to determine the presence and the relative amounts of different carbonyl groups in the obtained HGs, which can be modulated by varying the amounts of diisocyanate, L-cysteine, ​​and sorbitol employed in their synthesis. In addition, TGA and DSC analysis corroborated the influence of these carbonyl groups in the thermal properties of the HGs, i.e., thermal stability and glass transition. It was observed that an increase in L-cysteine and sorbitol amount in the HGs improved their thermal stability (> 200 °C) and increased their Tg values (55–68 °C) due to factors associated with crosslinking degree and intermolecular interactions. On the other hand, in terms of their functional behavior, HGs presented a good water absorption capacity at different pH values ​​(1.0, 7.0 and 12.0), being higher than 300% and enhanced by the presence of L-cysteine and sorbitol in the polymeric structures. Likewise, the HGs were able to retain and release an alkaline medium, in a controlled way, into a neutral and acidic environment, which points to the possibility of implementing this type of HGs in the design and development of novel drug delivery systems. Finally, an inhibitory effect (up to 40%) on the growth of gram-positive bacteria, such as S. aureus, by the HGs reflected their ability to effectively interact with these microorganisms by means of their polymeric structures and functional groups. In this sense, this work represents an important step in the designing and preparation of polymeric HGs based on isocyanate click chemistry, with modulated structural, thermal, and functional properties, that could be applied in different fields, including those of biomedical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Wang J, Chen H, Cheng D (2022) Sci Total Environ 846:157303. https://doi.org/10.1016/j.scitotenv.2022.157303

    Article  CAS  PubMed  Google Scholar 

  2. Sharma B, Bharti R, Sharma R (2022) Mater Today Commun 65:3657–3664. https://doi.org/10.1016/j.matpr.2022.06.237

    Article  CAS  Google Scholar 

  3. Caló E, Khutoryanskiy VV (2015) Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  4. Chen M, Wang Y, Zhan J, Peng Y, Han D, Ren S, Qin K, Li S, Gao Z (2022) J Nanobiotechnol 20:40. https://doi.org/10.1186/s12951-022-01242-x

    Article  CAS  Google Scholar 

  5. Tanasić J, Erceg T, Tanasić L, Baloš S, Klisurić O, Ristić I (2021) React Funct Polym 169:105085. https://doi.org/10.1016/j.reactfunctpolym.2021.105085

    Article  CAS  Google Scholar 

  6. Zuo XL, Wang SF, Le XX, Lu W, Chen T (2021) Chin J Polym Sci 39:1262–1280. https://doi.org/10.1007/s10118-021-2612-1

    Article  CAS  Google Scholar 

  7. Shahi S, Roghani-Mamaqani H, Talebi S (2022) Mardani H 455:214368. https://doi.org/10.1016/j.ccr.2021.214368

    Article  CAS  Google Scholar 

  8. Sharma S, Tiwari S (2020) Int J Bio Macromol 162:737–747. https://doi.org/10.1016/j.ijbiomac.2020.06.110

    Article  CAS  Google Scholar 

  9. Zhang Z, Fu H, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S (2022) Chem Eng J 439:135756. https://doi.org/10.1016/j.cej.2022.135756

    Article  CAS  Google Scholar 

  10. Fu W, Pei T, Mao Y, Li G, Zhao Y, Chen L (2019) J Memb Sci 572:453–463. https://doi.org/10.1016/j.memsci.2018.11.022

    Article  CAS  Google Scholar 

  11. Tran NPD, Yang MC, Tran-Nguyen PL (2021) Colloids Surf B 206:111957. https://doi.org/10.1016/j.colsurfb.2021.111957

    Article  CAS  Google Scholar 

  12. Yang X, Wang K, Yan L, Yu Q, Xia H, Liu Y, Yan C (2019). Iran Polym J. https://doi.org/10.1007/s13726-019-00758-8

    Article  Google Scholar 

  13. Ishikawa S, Iijima K, Matsukuma D, Iijima M, Osawa S, Otsuka H (2021) Mater Today Commun 9:100131. https://doi.org/10.1016/j.mtadv.2021.100131

    Article  CAS  Google Scholar 

  14. Wen J, Jia Z, Zhang X, Pan M, Yuan J, Zhu L (2020) Mater Today Commun 25:101569. https://doi.org/10.1016/j.mtcomm.2020.101569

    Article  CAS  Google Scholar 

  15. Wan Z, He J, Yang Y, Chong T, Wang J, Guo B, Xue L (2022) Acta Biomater. https://doi.org/10.1016/j.actbio.2022.09.006

    Article  PubMed  Google Scholar 

  16. Wang Y, Ouyang H, Xie Y, Jiang Y, Zhao L, Peng W, Wu J, Bao J, Liu Y, Wu J (2022) Polymer 254:125083. https://doi.org/10.1016/j.polymer.2022.125083

    Article  CAS  Google Scholar 

  17. Yang Y, Ren Y, Song W, Yu B, Liu H (2022) Mater Design 223:111086. https://doi.org/10.1016/j.matdes.2022.111086

    Article  CAS  Google Scholar 

  18. Zeng D, Shen S, Fan D (2021) Chin J Chem Eng 30:308–320. https://doi.org/10.1016/j.cjche.2020.12.005

    Article  CAS  Google Scholar 

  19. Lin F, Lu X, Wang Z, Lu Q, Lin G, Huang B, Lu B (2019) Cellulose 26:1825–1839. https://doi.org/10.1007/s10570-018-2171-y

    Article  CAS  Google Scholar 

  20. Li J, Mooney DJ (2016) Nat Rev Mater 1:16071. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vitaga M, Meinert C, Hutmacher DW, Bock N (2020) Pharmaceutics 12:1188. https://doi.org/10.3390/pharmaceutics12121188

    Article  CAS  Google Scholar 

  22. Arrua EC, Sanchez SV, Trincado V, Hidalgo A, Quest AFG, Morales JO (2022) Colloids Surf B 213:112403. https://doi.org/10.1016/j.colsurfb.2022.112403

    Article  CAS  Google Scholar 

  23. Rata DM, Cadinoiu AN, Popa M, Atanase LI, Daraba OM, Popescu I, Romila LE, Ichim DL (2021) Pharmaceutics 13:2079. https://doi.org/10.3390/pharmaceutics13122079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gottesmann M, Goycoolea FM, Steinbacher T, Menogni T, Hensel A (2020) Appl Microbiol Biotechnol 104:5943–5957. https://doi.org/10.1007/s00253-020-10647-3

    Article  CAS  PubMed  Google Scholar 

  25. Johnson KS, Ottemann KM (2018) Curr Opin Microbiol 41:51–57. https://doi.org/10.1016/j.mib.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  26. Srikanth M, Sandeep TSRS, Sucharitha K, Godi S (2022) Bioresour Bioprocess 9:42. https://doi.org/10.1186/s40643-022-00532-4

    Article  Google Scholar 

  27. Zhou JT, Li CL, Tan LH, Xu YF, Liu YH, Mo ZZ, Dou YX, Su R, Su ZR, Huang P, Xie JH (2017) PLoS ONE 12:e0168944. https://doi.org/10.1371/journal.pone.0168944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Claudio-Rizo JA, Escobedo-Estrada N, Carrillo-Cortes SL, Cabrera-Munguía DA, Flores-Guía TE, Becerra-Rodriguez JJ (2021) J Mater Sci Mater Med 32:70. https://doi.org/10.1007/s10856-021-06544-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tarasov AE, Rodin MD, Evdokimov PP, Perepelitsina EO, Romanova LB, Rakhimova MA (2021) Lapshina MA 94:624–632. https://doi.org/10.1134/S1070427221050104

    Article  CAS  Google Scholar 

  30. Tarakci EC, Gevrek TN (2022) Eur Polym J 175:111338. https://doi.org/10.1016/j.eurpolymj.2022.111338

    Article  CAS  Google Scholar 

  31. Cheng Z, Liu Y, Zhang D, Lu C, Wang C, Xu F, Wang J, Chu F (2019) Int J Biol Macramol 131:387–395. https://doi.org/10.1016/j.ijbiomac.2019.02.161

    Article  CAS  Google Scholar 

  32. Jia Y, Shi B, Jin J, Li J (2019) Polymer 180:121746. https://doi.org/10.1016/j.polymer.2019.121746

    Article  CAS  Google Scholar 

  33. Huang D, Yan G (2017) Org Biomol Chem 15:1753–1761. https://doi.org/10.1039/C6OB02720B

    Article  CAS  PubMed  Google Scholar 

  34. Mhiri S, Abid M, Abid S, Prochazka F, Pillon C, Mignard N (2022) J Polym Res 29:328. https://doi.org/10.1007/s10965-022-03153-9

    Article  CAS  Google Scholar 

  35. Yue H, Zhou J, Huang M, Hao C, Hao R, Dong C, He S, Liu H, Liu W, Zhu C (2021) Polymer 237:124358. https://doi.org/10.1016/j.polymer.2021.124358

    Article  CAS  Google Scholar 

  36. Ying H, Cheng J (2019) J Am Chem Soc 136:16974–16977. https://doi.org/10.1021/ja5093437

    Article  CAS  Google Scholar 

  37. Zeng Q, Xue S, Li J, Jiang W, Ding Y, Shen L (2022) Prog Org Coat 171:107040. https://doi.org/10.1016/j.porgcoat.2022.107040

    Article  CAS  Google Scholar 

  38. Cuscó C, Garcia J, Nicolás E, Rocas P, Rocas J (2016) Polym Chem 7:6457–6466. https://doi.org/10.1039/c6py01275b

    Article  Google Scholar 

  39. Kumari S, Avais M, Chattopadhyay S (2022) Polymer 256:125219. https://doi.org/10.1016/j.polymer.2022.125219

    Article  CAS  Google Scholar 

  40. Lu H, Dun C, Jariwala H, Wang R, Cui P, Zhang H, Dai Q, Yang S, Zhang H (2022) J Control Release 350:748–760. https://doi.org/10.1016/j.jconrel.2022.08.039

    Article  CAS  PubMed  Google Scholar 

  41. Risangud N, de Jongh PAJM, Wilson P, Haddleton DM (2021) Eur Polym J 159:110739. https://doi.org/10.1016/j.eurpolymj.2021.110739

    Article  CAS  Google Scholar 

  42. Li B, Wang C, Tian X, Luo Y, Cao X, Luo Z (2022) Colloids Surf A 654:130085. https://doi.org/10.1016/j.colsurfa.2022.130085

    Article  CAS  Google Scholar 

  43. Paula CTB, Pereira P, Coelho JFJ, Fonseca AC, Serra AC (2021) Mater Sci Eng C 131:112520. https://doi.org/10.1016/j.msec.2021.112520

    Article  CAS  Google Scholar 

  44. Huang Y, Yan H, Cai M, Song S, He C, Fan X, Zhu M (2022) Prog Org Coat 171:107049. https://doi.org/10.1016/j.porgcoat.2022.107049

    Article  CAS  Google Scholar 

  45. Jing X, Li X, Di Y, Zhao Y, Wang J, Kang M, Li Q (2021) Polymer 233:124205. https://doi.org/10.1016/j.polymer.2021.124205

    Article  CAS  Google Scholar 

  46. Feng Y, Xiao K, He Y, Du B, Hong J, Yin H, Lu D, Luo F, Li Z, Li J, Tan H, Fu Q (2021) Mater Sci Eng C 121:111820. https://doi.org/10.1016/j.msec.2020.111820

    Article  CAS  Google Scholar 

  47. Kudashev SV, Zheltobryukhov VF, Danilenko TI, Khramova VN (2017) Russ J Appl Chem 90:324–327. https://doi.org/10.1134/S1070427217020240

    Article  CAS  Google Scholar 

  48. Xie DM, Zhang YX, Li YD, Weng Y, Zeng JB (2022) Chem Eng J 446:137071. https://doi.org/10.1016/j.cej.2022.137071

    Article  CAS  Google Scholar 

  49. Liu J, Miao P, Zhang W, Song G, Feng J, Leng X, Li Y (2022) Polymer 256:125254. https://doi.org/10.1016/j.polymer.2022.125254

    Article  CAS  Google Scholar 

  50. Navarro R, García C, Rodríguez-Hernández J, Elvira C, Marcos-Fernández A, Gallardo A, Reinecke H (2020) Polym Chem 11:5140–5146. https://doi.org/10.1039/d0py00989j

    Article  CAS  Google Scholar 

  51. Lyu L, Wang Z, Ji J, Li Y, Wen Y, Zhang J, Li R, Chen Z, Pei J (2022) Constr Build Mater 347:128546. https://doi.org/10.1016/j.conbuildmat.2022.128546

    Article  CAS  Google Scholar 

  52. Oprea S, Potolinca VO (2022) Eur Polym J 166:111035. https://doi.org/10.1016/j.eurpolymj.2022.111035

    Article  CAS  Google Scholar 

  53. Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick JL (2015) Macromolecules 48:3153–3165. https://doi.org/10.1021/acs.macromol.5b00384

    Article  CAS  Google Scholar 

  54. Wei Y, Jiang X, Li S, Kong XZ (2019) Eur Polym J 115:384–390. https://doi.org/10.1016/j.eurpolymj.2019.03.054

    Article  CAS  Google Scholar 

  55. Du J, Ibaseta N, Guichardon P (2022) Chem Eng Res Design 182:256–272. https://doi.org/10.1016/j.cherd.2022.03.026

    Article  CAS  Google Scholar 

  56. Li XG, Xie YB, Huang MR, Umeyama T, Ohara T, Imahori H (2019) J Clean Prod 237:117543. https://doi.org/10.1016/j.jclepro.2019.07.018

    Article  CAS  Google Scholar 

  57. Yang M, Li Y, Dang X (2022) Environ Res 206:112266. https://doi.org/10.1016/j.envres.2021.112266

    Article  CAS  PubMed  Google Scholar 

  58. Yin X, Pang H, Luo Y, Zhang B (2021) Polym Chem 12:5400–5411. https://doi.org/10.1039/d1py00920f

    Article  CAS  Google Scholar 

  59. Otálora A, Lerma TA, Palencia M (2019) J Sci Technol Appl 7:5–19. https://doi.org/10.34294/j.jsta.19.7.47

    Article  Google Scholar 

  60. Palencia M (2018) J Adv Res 14:53–62. https://doi.org/10.1016/j.jare.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lerma T, Combatt E, Palencia M (2018) J Sci Technol Appl 4:17–27. https://doi.org/10.34294/j.jsta.18.4.27

    Article  Google Scholar 

  62. Lee SH, Shin SR, Lee DS (2018) Molecules 23:2515. https://doi.org/10.3390/molecules23102515

    Article  CAS  PubMed Central  Google Scholar 

  63. Palencia M, Lerma TA, Arrieta AA (2020) Mater Today Commun 22:100708. https://doi.org/10.1016/j.mtcomm.2019.100708

    Article  CAS  Google Scholar 

  64. Chan-Chan LH, González-García G, Vargas-Coronado RF, Cervantes-Uc JM, Hernández-Sánchez F, Marcos-Fernández A, Cauich-Rodríguez JV (2017) Eur Polym J 92:27–39. https://doi.org/10.1016/j.eurpolymj.2017.04.014

    Article  CAS  Google Scholar 

  65. Erice A, de Luzurriaga AR, Matxain JM, Ruipérez F, Azua JM, Grande HJ, Rekondo A (2018) Polymer 145:127–136. https://doi.org/10.1016/j.polymer.2018.04.076

    Article  CAS  Google Scholar 

  66. Otálora A, Palencia M (2019) J Sci Technol Appl 6:96–107. https://doi.org/10.34294/j.jsta.19.6.44

    Article  Google Scholar 

  67. Stern T (2018) Polym Adv Tecnhol 29:746–757. https://doi.org/10.1002/pat.4180

    Article  CAS  Google Scholar 

  68. Furtwengler P, Perrin R, Redl A, Avérous L (2017) Eur Polym J 97:319–327. https://doi.org/10.1016/j.eurpolymj.2017.10.020

    Article  CAS  Google Scholar 

  69. Bernardini J, Licursi D, Anguillesi I, Cinelli P, Coltelli MB, Antonetti C, Galletti AMR, Lazzeri A (2017) BioResources 12:3630–3655. https://doi.org/10.15376/biores.12.2.3630-3655

    Article  CAS  Google Scholar 

  70. Zhai Y, Luo Y, Wang X, Zhang C, Deng P, Chen H, Zhang R, Bao R, Zhao Y, Yang M, Yang W (2022) Polymer 259:125324. https://doi.org/10.1016/j.polymer.2022.125324

    Article  CAS  Google Scholar 

  71. Mokeev MV, Ostanin SA, Saprykina NN, Zuev V (2018) Polymer 150:72–83. https://doi.org/10.1016/j.polymer.2018.07.014

    Article  CAS  Google Scholar 

  72. Liu X, Li Y, Xing X, Zhang G, Jing X (2021) Polymer 229:124022. https://doi.org/10.1016/j.polymer.2021.124022

    Article  CAS  Google Scholar 

  73. Li C, Li H, Tan J, Xue Y, Liu Q, Yang Y, Wang C, Zhang Q (2022) Compos Sci Technol 218:109215. https://doi.org/10.1016/j.compscitech.2021.109215

    Article  CAS  Google Scholar 

  74. Qiu WG, Zhang F, Jiang X, Kong X (2018) J Polym Sci 36:1150–1156. https://doi.org/10.1007/s10118-018-2130-y

    Article  CAS  Google Scholar 

  75. Nur PF, Pinar T, Uğur P, Ayşenur Y, Murat E, Kenan Y (2021) Mater Today Commun 29:102921. https://doi.org/10.1016/j.mtcomm.2021.102921

    Article  CAS  Google Scholar 

  76. Oulidi O, Nakkabi A, Elaraaj I, Fahim M, El Moualij N (2022) Chem Eng J Adv 12:100399. https://doi.org/10.1016/j.ceja.2022.100399

    Article  CAS  Google Scholar 

  77. Chonan Y, Matsuba G, Nishida K, Hu W (2021) Polymer 213:123201. https://doi.org/10.1016/j.polymer.2020.123201

    Article  CAS  Google Scholar 

  78. Ziegler W, Guttmann P, Kopeinig S, Dietrich M, Amirosanloo S, Riess G, Kern W (2018) Polym Test 71:18–26. https://doi.org/10.1016/j.polymertesting.2018.08.021

    Article  CAS  Google Scholar 

  79. Jiang L, Lei Y, Xiao Y, Xu H, Yuan A, Wei Z, Chen Y, Lei J (2021) Chem Eng J 410:128354. https://doi.org/10.1016/j.cej.2020.128354

    Article  CAS  Google Scholar 

  80. Tripathi M, Parthasarathy S, Kumar D, Chandel P, Sharma P, Roy PK (2020) Polym Test 86:106488. https://doi.org/10.1016/j.polymertesting.2020.106488

    Article  CAS  Google Scholar 

  81. Laxmi KS, Zafar F, Kareem A, Nami SAA, Alam M, Nishat N (2019) Spectrochim Acta A Mol Biomol Spectrosc 219:552–568. https://doi.org/10.1016/j.saa.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  82. Zhou Z, Chen Y, Guo A, Xue T, Li X, Yu C, Zhang F (2022) Comp Sci Technol 224:109462. https://doi.org/10.1016/j.compscitech.2022.109462

    Article  CAS  Google Scholar 

  83. Xiang J, Yang S, Zhang J, Wu J, Shao Y, Wang Z, Yang M (2022) Polym Bull 79:2667–2684. https://doi.org/10.1007/s00289-021-03639-4

    Article  CAS  Google Scholar 

  84. Liu Y, Zheng J, Zhang X, Du Y, Li K, Yu G, Jia Y, Zhang Y (2021) J Colloid Interface Sci 593:105–115. https://doi.org/10.1016/j.jcis.2021.03.003

    Article  CAS  PubMed  Google Scholar 

  85. Muscas F, Sessini V, Peponi L, López AJ, Ureña A, Navarro R, Marcos-Fernández Á (2022) Polymers 14:3447. https://doi.org/10.3390/polym14173447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patil S, Chaudhury P, Clarizia L, McDonald M, Reynaud E, Gaines P, Schmidt DF (2012) Acta Biomater 8:2919–2931. https://doi.org/10.1016/j.actbio.2012.04.040

    Article  CAS  PubMed  Google Scholar 

  87. Wang C, Luo Y, Cao X, Li B, Luo Z (2021) Polymer 233:124213. https://doi.org/10.1016/j.polymer.2021.124213

    Article  CAS  Google Scholar 

  88. Xue S, Pei D, Jiang W, Mu Y, Wan X (2016) Polymer 99:340–348. https://doi.org/10.1016/j.polymer.2016.07.034

    Article  CAS  Google Scholar 

  89. Yoshitake M, Kamiyama Y, Nishi K, Yoshimoto N, Morita M, Sakai T, Fujii K (2017) Phys Chem Chem Phys 19:29984–29990. https://doi.org/10.1039/C7CP06126A

    Article  CAS  PubMed  Google Scholar 

  90. De Piano R, Caccavo D, Cascone S, Festa C, Lamberti G, Barba AA (2021) J Drug Deliv Sci Technol 61:102146. https://doi.org/10.1016/j.jddst.2020.102146

    Article  CAS  Google Scholar 

  91. Suhail M, Shih CM, Liu JY, Hsieh WC, Lin YW, Lin IL, Wu PC (2022) J Drug Deliv Sci Technol 75:103715. https://doi.org/10.1016/j.jddst.2022.103715

    Article  CAS  Google Scholar 

  92. Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S (2021) J Drug Deliv Sci Technol 66:102914. https://doi.org/10.1016/j.jddst.2021.102914

    Article  CAS  Google Scholar 

  93. Jung A, Wichold O (2018) Soft Matter 14:8105–8111. https://doi.org/10.1039/C8SM01158C

    Article  CAS  PubMed  Google Scholar 

  94. Hu Y, Kim Y, Jeong JP, Park S, Shin Y, Hong IK, Kim MS, Jung S (2022) Eur Polym J 174:111308. https://doi.org/10.1016/j.eurpolymj.2022.111308

    Article  CAS  Google Scholar 

  95. Shaghaleh H, Hamoud YA, Xu X, Wang S, Liu H (2022) J Clean Prod 368:133098. https://doi.org/10.1016/j.jclepro.2022.133098

    Article  CAS  Google Scholar 

  96. Motokucho S, Matsumoto T, Nakayama Y, Horiuchi R, Morikawa H, Nakatani H (2017) Polym Bull 74:615–623. https://doi.org/10.1007/s00289-016-1733-0

    Article  CAS  Google Scholar 

  97. Phoungtawee P, Crespy D (2021) Polym Chem 12:3893–3899. https://doi.org/10.1039/D1PY00649E

    Article  CAS  Google Scholar 

  98. Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) Sci World J 2014:410423. https://doi.org/10.1155/2014/410423

    Article  CAS  Google Scholar 

  99. Xu Z, Mei L, Shi Y, Yun M, Luan Y, Miao Z, Liu Z, Li XM, Jiao M (2022) Biomacromol 23:2778–2784. https://doi.org/10.1021/acs.biomac.2c00145

    Article  CAS  Google Scholar 

  100. Kim SJ, Chang J, Singh M (2015) Biochim Biophys Acta Biomembr 1848:350–362. https://doi.org/10.1016/j.bbamem.2014.05.031

    Article  CAS  Google Scholar 

  101. Harayama T, Riezman H (2018) Nat Rev Mol Cell Biol 19:281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  102. Auer GK, Weibel DB (2017) Biochemistry 56:3710–3724. https://doi.org/10.1021/acs.biochem.7b00346

    Article  CAS  PubMed  Google Scholar 

  103. Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ (2016) Materials 9:599. https://doi.org/10.3390/ma9070599

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Universidad del Valle and Mindtech s.a.s for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed with the experimental design, analysis, and manuscript writing. In addition, M. Palencia introduced the main idea and supervised the work, A. Otálora contributed with the preparation and characterization of the materials, and T. A. Lerma contributed with the experimental analysis.

Corresponding author

Correspondence to Manuel Palencia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otálora, A., Lerma, T.A. & Palencia, M. Novel one-pot synthesis of polymeric hydrogels based on isocyanate click chemistry: Structural and functional characterization. J Polym Res 29, 491 (2022). https://doi.org/10.1007/s10965-022-03331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03331-9

Keywords

Navigation