Skip to main content
Log in

Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The concept of self-healing that involves a built-in ability to heal in response to damage wherever and whenever it occurs in a material, analogous to the healing process in living organisms, has emerged a couple of decades ago. Driven primarily by the demands for life-like materials and soft smart materials, therefore, the development of self-healing polymeric hydrogels has continually attracted the attention of the scientific community. Here, this review is intended to give an in-depth overview of the state-of-the-art advances in the field of self-healing polymeric hydrogels. Specifically, recently emerging trends in self-healing polymeric hydrogels are summarized, and notably, recommendations to endow these hydrogels with fascinating multi-functionalities including luminescence, conductivity/magnetism and shape memory etc. are presented. To close, the current challenges and future opportunities in this field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shang, J. J.; Le, X. X.; Zhang, J. W.; Chen, T.; Theato, P. Trends in polymeric shape memory hydrogels and hydrogel actuators. Polym. Chem. 2019, 10, 1036–1055.

    Article  CAS  Google Scholar 

  2. Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118.

    Article  Google Scholar 

  3. Wheeler, J. C.; Woods, J. A.; Cox, M. J.; Cantrell, R. W.; Watkins, F. H.; Edlich, R. F. Evolution of hydrogel polymers as contact lenses, surface coatings, dressings, and drug delivery systems. J. Long Term Eff. Med. Implants. 1996, 6, 207–217.

    CAS  PubMed  Google Scholar 

  4. Jeon, I.; Cui, J. X.; Illeperuma, W. R. K.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 2016, 28, 4678–4683.

    Article  CAS  PubMed  Google Scholar 

  5. Phadke, A.; Zhang, C.; Arman, B.; Hsu, C. C.; Mashelkar, R. A.; Lele, A. K.; Tauber, M. J.; Arya, G.; Varghese, S. Rapid self-healing hydrogels. Proc. Natl. Acad. Sci. USA 2012, 109, 4383–4388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai, L. L.; Liu, S.; Guo, J. W.; Jia, Y. G. Polypeptide-based self-healing hydrogels: design and biomedical applications. Acta Biomat. 2020, 113, 84–100.

    Article  CAS  Google Scholar 

  7. Wei, Z.; Yang, J. H.; Zhou, J. X.; Xu, F.; Zrinyi, M.; Dussault, P. H.; Osada, Y.; Chen, Y. M. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 2014, 43, 8114–8131.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Y.; Ding, X. C.; Urban, M. W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015, 49-50, 34–59.

    Article  CAS  Google Scholar 

  9. Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Sufaace-initiated self-healing of polymers in aqueous media. Nat. Mater. 2014, 13, 867–872.

    Article  CAS  PubMed  Google Scholar 

  10. Eyring, H. Plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys 1936, 4, 283–291.

    Article  CAS  Google Scholar 

  11. Taylor, D. L.; Panhuis, M. I. H. Self-healing hydrogels. Adv. Mater. 2016, 28, 9060–9093.

    Article  CAS  PubMed  Google Scholar 

  12. Mondal, S.; Das, S.; Nandi, A. K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J.; Huang, Y. K.; Ma, X. Y.; Lei, Y. Functional self-healing materials and their potential applications in biomedical engineering. Adv. Compos. Hybrid Mater. 2018, 1, 94–113.

    Article  CAS  Google Scholar 

  14. Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. 2021, 39, 554–565.

    Article  CAS  Google Scholar 

  15. Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762.

    CAS  Google Scholar 

  16. Xun, X. C.; Zhang, Z.; Zhao, X.; Zhao, B.; Gao, F. F.; Kang, Z.; Liao, Q. L.; Zhang, Y. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 2020, 14, 9066–9072.

    Article  CAS  PubMed  Google Scholar 

  17. Sima, W. X.; Shao, Q. Q.; Sun, P. T.; Liang, C.; Yang, M.; Yin, Z.; Deng, Q. Magnetically gradient-distributed microcapsule/epoxy composites: Low capsule load and highly targeted self-healing performance. Chem. Eng. J. 2021, 405, 126908.

    Article  CAS  Google Scholar 

  18. Hornat, C. C.; Urban, M. W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 2020, 102, 101208.

    Article  CAS  Google Scholar 

  19. Zhu, D. Y.; Rong, M. Z.; Zhang, M. Q. Self-healing polymers and composites. Prog. Polym. Sci. 2015, 49-50, 175–220.

    Article  CAS  Google Scholar 

  20. Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S. Sottos, N. R.; White, S. R. Self-healing polymers and composites. Annu. Rev. Mater. Res. 2010, 40, 179–211.

    Article  CAS  Google Scholar 

  21. Liu, J.; Zhang, X. C.; Chen, X.; Qu, L. L. Stimuli-responsive dendronized polymeric hydrogels through Schiff-base chemistry showing remarkable topological effects. Polym. Chem. 2018, 9, 378–387.

    Article  CAS  Google Scholar 

  22. Neal, J. A.; Mozhdehi, D.; Guan, Z. B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850.

    Article  CAS  PubMed  Google Scholar 

  23. Gao, Z. Y.; Gotland, B.; Tronci, G.; Thornton, P. D. A redoxresponsive hyaluronic acid-based hydrogel for chronic wound management. J. Mater. Chem. B 2019, 7, 7494–7501.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. C.; Le, X. X.; Jian, Y. K.; Lu, W.; Zhang, J. W.; Chen, T. 3D fluorescent hydrogel origami for multistage data security protection. Adv. Funct. Mater. 2019, 29, 1905514.

    Article  CAS  Google Scholar 

  25. Meng, H.; Xiao, P.; Gu, J. C.; Wen, X. F.; Xu, J.; Zhao, C. Z.; Zhang, J. W.; Chen, T. Self-healable macro-/microscopic shape memory hydrogels based on supramolecular interactions. Chem. Commun. 2014, 50, 12277.

    Article  CAS  Google Scholar 

  26. Shao, C. Y.; Wang, M.; Chang, H. L.; Xu, F.; Yang, J. A self-Healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction. ACS Sustain. Chem. Eng. 2017, 5, 6167–6174.

    Article  CAS  Google Scholar 

  27. Xia, N. N.; Xiong, X. M.; Rong, M. Z.; Zhang, M. Q.; Kong, F. Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl. Mater. Interfaces 2017, 9, 37300–37309.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. M.; Huang, F. R.; Chen, X. B.; Wang, X. W.; Zhang, W. B.; Peng, J.; Li, J. Q.; Zhai, M. L. Stretchable, conductive, and self-healing hydrogel with super metal adhesion. Chem. Mater. 2018, 30, 4289–4297.

    Article  CAS  Google Scholar 

  29. Tamate, R.; Hashimoto, K.; Horii, T.; Hirasawa, M.; Li, X.; Shibayama, M.; Watanabe, M. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1802792.

    Article  CAS  Google Scholar 

  30. Li, L.; Yan, B.; Yang, J.; Chen, L.; Zeng, H. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater 2015, 27, 1294–1299.

    Article  CAS  PubMed  Google Scholar 

  31. Nishimura, T.; Sum, N.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K. Supramacromolecular injectable hydrogels by crystallization-driven self-assembly of carbohydrate-conjugated poly(2-isopropyloxazoline)s for biomedical applications. J. Mater. Chem. B 2019, 7, 6362–6369.

    Article  CAS  PubMed  Google Scholar 

  32. Nakahata, M.; Takashima, Y. Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol. Rapid Commun. 2016, 37, 86–92.

    Article  CAS  PubMed  Google Scholar 

  33. Wei, Z. J.; He, J.; Liang, T.; Oh, H.; Athas, J.; Tong, Z.; Wang, C. Y.; Nie, Z. H. Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym. Chem. 2013, 4, 4601–4605.

    Article  CAS  Google Scholar 

  34. Wei, S. X.; Li, Z.; Lu, W.; Liu, H.; Zhang, J. W.; Chen, T.; Tang, B. Z. Multicolor fluorescent polymeric hydrogels: colorfulness is more shining than homochromy. Angew. Chem. Int. Ed. 2021, 60, 8608–8624.

    Article  CAS  Google Scholar 

  35. Peivandi, A.; Tian, L.; Mahabir, R.; Hosseinidoust, Z. Hierarchically structured, self-healing, fluorescent, bioactive hydrogels with self-organizing bundles of phage nanofilaments. Chem. Mater 2019, 31, 5442–5449.

    Article  CAS  Google Scholar 

  36. Zhang, Y. D. Y.; Ding, Z. Y.; Liu, Y.; Zhang, Y. P.; Jiang, S. M. White-light-emitting hydrogels with self-healing properties and adjustable emission colors. J. Colloid Interf. Sci 2021, 582, 825–833.

    Article  CAS  Google Scholar 

  37. Zhu, C. N.; Bai, T. W.; Wang, H.; Bai, W.; Ling, J.; Sun, J. Z. Huang, F. H.; Wu, Z. L.; Zheng, Q. Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl. Nano Mater. 2018, 10, 39343–39352.

    Article  CAS  Google Scholar 

  38. Zhao, Q.; Chen, Y.; Li, S. H.; Liu, Y. Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chem. Commun. 2018, 54, 200–203.

    Article  CAS  Google Scholar 

  39. Yang, D. Q.; Wang, Y. G.; Li, Z. Q.; Xu, Y.; Cheng, F.; Li, P.; Li, H. R. Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability. J. Mater. Chem. C 2018, 6, 1153–1159.

    Article  CAS  Google Scholar 

  40. Chen, H.; Ma, X.; Wu, S. F.; Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 2014, 126, 14373–14376.

    Article  Google Scholar 

  41. Li, B.; Lin, C. L.; Lu, C. J.; Zhang, J. J.; He, T.; Qiu, H. Y.; Yin, S. C. Rapid and reversible thermochromic supramolecular polymer hydrogel and its application in protected quick response code. Mater. Chem. Front. 2020, 4, 869–874.

    Article  Google Scholar 

  42. Xie, S. W.; Ren, B. P.; Gong, G.; Zhang, D.; Chen, Y.; Xu, L. J.; Zhang, C. F.; Xu, J. X.; Zheng, J. Lanthanide-doped upconversion nanoparticle-cross-linked double-network hydrogels with strong bulk/interfacial toughness and tunable full-color fluorescence for bioimaging and biosensing. ACS Appl. Nano Mater. 2020, 3, 2774–2786.

    Article  CAS  Google Scholar 

  43. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

  44. Li, J.; Wang, J. X.; Li, H. X.; Song, N.; Wang, D.; Tang, B. Z. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172.

    Article  CAS  PubMed  Google Scholar 

  45. Ji, X. F.; Li, Z.; Hu, Y. B.; Xie, H. L.; Wu, W. J.; Song, F. Y.; Liu, H. X.; Wang, J. G.; Jiang, M. J.; Lam, J. W. Y.; Tang, B. Z. Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem. 2020, 3, 1146–1156.

    Article  CAS  Google Scholar 

  46. Guaresti, O.; Crocker, L.; Palomares, T.; Alonso-Varona, A.; Eceiza, A.; Fruk, L.; Gabilondo, N. Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability. J. Mater. Chem. B 2020, 8, 9804–9811.

    Article  CAS  PubMed  Google Scholar 

  47. Ma, C. X.; Lu, W.; Yang, X. X.; He, J.; Le, X. X.; Wang, L.; Zhang, J. W.; Serpe, M. J.; Huang, Y. J.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2018, 25, 1704568.

    Article  CAS  Google Scholar 

  48. Wu, B. Y.; Le, X. X.; Jian, Y. K.; Lu, W.; Yang, Z. Y.; Zheng, Z. K.; Theato, P.; Zhang, J. W.; Zhang, A.; Chen, T. pH and thermo dual-responsive fluorescent hydrogel actuator. Macromol. Rapid Commun. 2019, 40, 1800648.

    Article  CAS  Google Scholar 

  49. Deng, Z. X.; Wang, H.; Ma, P. X.; Guo, B. L. Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 2020, 12, 1224–1246.

    Article  CAS  PubMed  Google Scholar 

  50. Bao, R.; Tan, B. Y.; Liang, S.; Zhang, N.;. Wang, W; Liu, W. G. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials 2017, 122, 63–71.

    Article  CAS  PubMed  Google Scholar 

  51. Gao, G. R.; Yang, F. G.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater. 2020, 32, 2004290.

    Article  CAS  Google Scholar 

  52. Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2018, 30, 1705922.

    Article  CAS  Google Scholar 

  53. Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389.

    Article  CAS  Google Scholar 

  54. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-Healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

    Article  CAS  Google Scholar 

  55. Gao, F.; Xie, W. S.; Miao, Y. Q.; Wang, D.; Guo, Z. H.; Ghosal, A.; Li, Y. S.; Wei, Y.; Feng, S. S.; Zhao, L. Y.; Fan, H. M. Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention. Adv. Healthc. Mater. 2019, 8, 1900203.

    Article  CAS  Google Scholar 

  56. Zhang, Y. L.; Yang, B.; Zhang, X. Y.; Xu, L. X.; Tao, L.; Lia, S. X.; Wei, Y. A magnetic self-healing hydrogel. Chem. Commun. 2012, 48, 9305–9307.

    Article  CAS  Google Scholar 

  57. Gang, F. L.; Yan, H.; Ma, B C. Y.; Jiang, L.; Gu, Y. Y.; Liu, Z. Y.; Zhao, L. Y.; Wang, X. M.; Zhang, J. W.; Sun, X. D. Robust magnetic doublenetwork hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chem. Commun. 2019, 55, 12412–12412.

    Article  CAS  Google Scholar 

  58. Zhang, D. C.; Zhang, J. W.; Jian, Y. K.; Wu, B. Y.; Yan, H. Z.; Lu, H. H.; Wei, S. X.; Wu, S.; Xue, Q. J.; Chen, T. Multi-field synergy manipulating soft polymeric hydrogel transformers. Adv. Intell. Syst. 2021, 3, 2000208.

    Article  Google Scholar 

  59. Zhang, Y. L.; Wang, Y.; Wen, Y. Y.; Zhong, Q. F.; Zhao, Y. J. Self-healable magnetic structural color hydrogels. ACS Appl. Mater. Interfaces 2020, 12, 7486–7493.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, L.; Yang, X. F.; Chen, H. M.; Yang, G.; Gong, T.; Li, W. B.; Zhou, S. B. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4, 4461–4468.

    Article  CAS  Google Scholar 

  61. Zhang, Y. Y.; Gao H. J.; Wang, H.; Xu, Z. Y.; Chen, X. W.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L. F.; Li, Y.; Li, Z. S.; Men, Y. F.; Feng, X. Q.; Liu, W. G. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv. Funct. Mater. 2018, 28, 1705962.

    Article  CAS  Google Scholar 

  62. Zhang, Y. C.; Le, X. X.; Lu, W.; Jian, Y. K.; Zhang, J. W.; Chen, T. An “off-the-Shelf” shape memory hydrogel based on the dynamic borax-diol ester bonds. Macromol. Mater. Eng. 2018, 303, 1800144.

    Article  CAS  Google Scholar 

  63. Le, X. X.; Lu, W.; Zheng, J.; Tong, D. Y.; Zhao, N.; Ma, C. X.; Xiao, H.; Zhang, J. W.; Huang, Y. J.; Chen, T. Stretchable supramolecular hydrogels with triple shape memory effect. Chem. Sci. 2016, 7, 6715–6720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meng, H.; Zheng, J.; Wen, X. F.; Cai, Z. Q.; Zhang, J. W.; Chen, T. pH- and sugar-induced shape memory hydrogel based on reversible penylboronic acid-diol ester bonds. Macromol. Rapid Commun. 2015, 36, 533–537.

    Article  CAS  PubMed  Google Scholar 

  65. Li, Z. W.; Lu, W.; Ngai, T.; Le, X. X.; Zheng, J.; Zhao, N.; Huang, Y. J.; Wen, X. F.; Zhang, J. W.; Chen, T. Mussel-inspired multifunctional supramolecular hydrogels with self-healing, shape memory and adhesive properties. Polym. Chem. 2016, 7, 5343–5346.

    Article  CAS  Google Scholar 

  66. Qiu, H. Y.; Wei, S. X.; Liu, H.; Zhan, B. B.; Yan, H. Z.; Lu, W.; Zhang, J. W.; Wu, S.; Chen, T. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for on-demand information decryption and transmission. Adv. Intell. Syst. 2021, 3, 2000239.

    Article  Google Scholar 

  67. Jiang, L. B.; Lu, Y.; Liu, X. Y.; Tu, H.; Zhang, J. W.; Shi, X. W.; Deng H. B.; Du, Y. M. Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application. Carbohydr. Polym. 2015, 121, 428–435.

    Article  CAS  PubMed  Google Scholar 

  68. Yan, K.; Xu, F. Y.; Wang, C. Y.; Li, Y. Y.; Chen, Y. L.; Li, X. F.; Lu, Z. T. Wang, D. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multistimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater. Sci. 2020, 8, 3193–3201.

    Article  CAS  PubMed  Google Scholar 

  69. Lu, X. K.; Chan, C. Y.; Lee, K. I.; Ng, P. F.; Fei, B.; Xin, J. H.; Fu, J. Super-tough and thermo-healable hydrogel-promising for shape-memory absorbent fiber. J. Mater. Chem. B 2014, 2, 7631–7638.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, H. J.; Han, D. H.; Yan, Q.; Fortin, D.; Xia, H. S.; Zhao, Y. Light-healable hard hydrogels through photothermally induced melting-crystallization phase transition. J. Mater. Chem. A 2014, 2, 13373–13379.

    Article  CAS  Google Scholar 

  71. Yang, L.; Wang, Z. H.; Fei, G. X.; Xia, H. S. Polydopamine particles reinforced poly(vinyl alcohol) hydrogel with NIR light triggered shape memory and self-healing capability. Macromol. Rapid Commun. 2017, 38, 1700421.

    Article  CAS  Google Scholar 

  72. Ye, F. M.; Li, M.; Ke, D. N.; Wang, L. P.; Lu, Y. Ultrafast self-healing and injectable conductive hydrogel for strain and pressure sensors. Adv. Mater. Technol. 2019, 4, 1900346.

    Article  CAS  Google Scholar 

  73. Wang, Z. F.; Ren, Y. P.; Zhu, Y.; Hao, L. J.; Chen, Y. H.; An, G.; Wu, H. K.; Shi, X. T.; Mao, C. B. A novel rapidly self-healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility. Angew. Chem. Int. Ed. 2018, 57, 9008–9012.

    Article  CAS  Google Scholar 

  74. Zheng, J.; Xiao, P.; Liu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. Mechanical robust and self-healable supramolecular hydrogel. Macromol. Rapid Commun. 2016, 37, 265–270.

    Article  PubMed  CAS  Google Scholar 

  75. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937.

    Article  CAS  PubMed  Google Scholar 

  76. Long, T. J.; Li, Y. X.; Fang, X.; Sun, J. Q. Salt-Mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater. 2018, 28, 1804416.

    Article  CAS  Google Scholar 

  77. Hussain, I.; Sayed, S. M.; Liu, S. L.; Oderinde, O.; Yao, F.; Fu, G. D. Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. Int. J. Biol. Macromol. 2018, 117, 648–658.

    Article  CAS  PubMed  Google Scholar 

  78. Lin, J.; Zheng, S. Y.; Xiao, R.; Yin, J.; Wu, Z. L.; Zheng, Q.; Qian, J. Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds. J. Mech. Phys. Solids 2020, 139, 103935.

    Article  CAS  Google Scholar 

  79. Li, S. D.; Chen, N.; Li, X. P.; Li, Y.; Xie, Z. P.; Ma, Z. Y.; Zhao, J.; Hou, X.; Yuan, X. B. Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care. Adv. Funct. Mater. 2020, 30, 2000130.

    Article  CAS  Google Scholar 

  80. Liu, T. Q.; Peng, X.; Chen, Y. Y.; Zhang, J. N.; Jiao, C.; Wang, H. L. Solid-phase esterification between poly(vinyl alcohol) and malonic acid and its function in toughening hydrogels. Polym. Chem. 2020, 11, 4787–4797.

    Article  CAS  Google Scholar 

  81. Li, K.; Wang, J. X.; Li, P.; Fan, Y. B. Ternary hydrogel with tunable mechanical and self-healing properties based on the synergistic effects of multi-dynamic bonds. J. Mater. Chem. B 2020, 8, 4660–4671.

    Article  CAS  PubMed  Google Scholar 

  82. Xu, C. H.; Zhan, W.; Tang, X. Z.; Mo, F.; Fu, L. H.; Lin, B. F. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym. Test. 2018, 66, 155–163.

    Article  CAS  Google Scholar 

  83. Kawamoto, K.; Grindy, S. C.; Liu, J.; Holten-Andersen, N.; Johnson, J. A. Dual role for 1,2,4,5-tetrazines in polymer networks: combining Diels-Alder reactions and metal coordination to generate functional supramolecular gels. ACS Macro Lett. 2015, 4, 458–461.

    Article  CAS  PubMed  Google Scholar 

  84. Lv, Y. K.; Pan, Z.; Song, C. Z.; Chen, Y. L.; Qian, X. Locust bean gum/gellan gum double-network hydrogels with superior self-healing and pH-driven shape-memory properties. Soft Matter 2019, 15, 6171–6179.

    Article  CAS  PubMed  Google Scholar 

  85. Qiao, L. Y.; Liu, C. D.; Liu, C.; Yang, L. Q.; Zhang, M. X.; Liu, W. T.; Wang, J. Y.; Jian, X. G. Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds. J. Mater. Sci. 2019, 54, 8814–8828.

    Article  CAS  Google Scholar 

  86. Cong, H. P.; Wang, P.; Yu, S. H. Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 2014, 10, 448–453.

    Article  CAS  PubMed  Google Scholar 

  87. Yang, J.; Wang, X. P.; Xie, X. M. In situ synthesis of poly(acrylic acid) physical hydrogels from silica nanoparticles. Soft Matter 2012, 5, 1058–1063.

    Article  Google Scholar 

  88. Zhang, Y. W.; Yuan, B.; Zhang, Y. Q.; Cao, Q. P.; Yang, C.; Li, Y.; Zhou, J. H. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem. Eng. J. 2020, 400, 125984.

    Article  CAS  Google Scholar 

  89. Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X. F.; Guo, H. L.; Gong, J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27, 2722–2727.

    Article  CAS  PubMed  Google Scholar 

  90. Wu, Z. N.; Yao, Q. F.; Zang, S. Q.; Xie, J. P. Aggregation-induced emission in luminescent metal nanoclusters. Natl. Sci. Rev. 2020.

  91. Zhao, X. X; Sun, W. W.; Geng, D. C.; Fu, W.; Dan, J. D.; Xie, Y.; Kent, P. R. C.; Zhou, W.; Pennycook, S. J.; Loh, K. P. Edge segregated polymorphism in 2D molybdenum carbide. Adv. Mater. 2019, 31, 1808343.

    Article  CAS  Google Scholar 

  92. Hui, C. Y.; Long, R. A constitutive model for the large deformation of a self-healing gel. Soft Matter 2012, 5, 8209–8216.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51773215, 21774138), the Sino-German Mobility Programme (No. M-0424), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDB-SSW-SLH036), and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2019297). Xiaoling Zuo is grateful for the financial supported by Science and Technology Fund of Guizhou Province, China (No. [2020]1Y209), the Overseas Talents Selection Fund of Guizhou Province, China (No. [2020]11) and Fund Project of Guizhou Minzu University, China (No. GZMU[2019]YB23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lu or Tao Chen.

Additional information

Biography

Wei Lu received his PhD degree in polymer chemistry and physics from Zhejiang University in China (2014). Soon afterwards he joined Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences. He was promoted to Associate Professor in 2017 and Professor in 2020. His current research is focused on the fabrication of multifunctional fluorescent polymeric materials for applications in chemical sensing and biomimetic actuators.

Tao Chen received his Ph.D. in polymer chemistry and physics from Zhejiang University in 2006. After his postdoctoral training at the University of Warwick (UK), he joined Duke University (USA) as a research scientist. He then moved back to Europe as an Alexander von Humboldt Research Fellow at Technische Universität Dresden (Germany). Since 2012, he is a full-time professor at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences. He leads a smart polymeric materials group working on actuator, shape memory, and sensing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, XL., Wang, SF., Le, XX. et al. Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials. Chin J Polym Sci 39, 1262–1280 (2021). https://doi.org/10.1007/s10118-021-2612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2612-1

Keywords

Navigation