Skip to main content

Advertisement

Log in

High strength, tough and self-healing chitosan-based nanocomposite hydrogels based on the synergistic effects of hydrogen bond and coordination bond

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we proposed a simple one-pot strategy to synthesize a fully physically cross-linked chitosan-based nanocomposite hydrogels through the construction of hydrogen bonds and metal-carboxylate coordination bonds within hydrogel networks, in which Al3+ and hydroxyapatite acted as cross-linking points. FT-IR and XPS results confirmed that chitosan-based nanocomposite hydrogels were synthesized by the non-covalent interactions. pH-sensitivity, surface morphology and mechanical properties of the synthesized hydrogels can be regulated by the compositions. The resulting optimal sample exhibited three-dimensional structure, high tensile strength (379.5 kPa), and large elongation at break (18.6 mm/mm). The non-covalent interactions served as sacrificial bonds to dissipate energy during the deformation of the hydrogels, which improved significantly the toughness of the materials. Additionally, the multiple dynamically reversible non-covalent interactions not only made the materials have fast self-recovery capacity, but also gave the materials good self-healing ability. We expect that this facile strategy of incorporating the hydrogen bonds and coordination bonds may enrich the avenue in exploration of dynamic and tunable nanocomposite hydrogels to expand their potential applications in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. EI Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189

  2. Hamed I, Ӧzogul F, Regenstein JM (2016) Industrial applications of crustacean by -product (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Tech 48:40–50

    Article  CAS  Google Scholar 

  3. Wang J, Zhuang S (2022) Chitosan-based materials: Preparation, modification and application. J Clean Prod 355:131825

    Article  CAS  Google Scholar 

  4. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohyd Polym 82:227–232

    Article  CAS  Google Scholar 

  5. Jin Z, Hu G, Zhao K (2022) Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohyd Polym 283:119174

    Article  CAS  Google Scholar 

  6. Chen MC, Ling MH, Lai KY, Pramudityo E (2012) Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromol 13:4022–4031

    Article  CAS  Google Scholar 

  7. Cheikh D, García-Villén F, Majdoub H, Viseras C, Zayani MB (2019) Chitosan/beidellite nanocomposite as diclofenac carrier. Int J Biol Macromol 126:44–53

    Article  CAS  PubMed  Google Scholar 

  8. Chen YL, Lee HP, Chan HY, Sung LY, Chen HC, Hu YC (2007) Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials 28:2294–2305

    Article  CAS  PubMed  Google Scholar 

  9. Ali A, Hasan A, Negi YS (2022) Effect of carbon based fillers on xylan-chitosan/nano-HAp composite matrix for bone tissue engineering application. Int J Biol Macromol 197:1–11

    Article  CAS  PubMed  Google Scholar 

  10. Soundarya SP, Menon AH, Chandran SV, Selvamurugan N (2018) Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–1239

    Article  CAS  Google Scholar 

  11. Sennakesavan G, Mostakhdemin M, Dkhar LK, Seyfoddin A, Fatihhi SJ (2020) Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym Degerad Stabil 180:109308

    Article  CAS  Google Scholar 

  12. Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sensor Actuat B Chem 147:765–774

    Article  CAS  Google Scholar 

  13. Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H et al (2020) Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 154:795–817

    Article  CAS  PubMed  Google Scholar 

  14. Parente ME, Ochoa Andrade A, Ares G, Russo F, Jiménez-Kairuz Á (2015) Bioadhesive hydrogels for cosmetic applications. Int J Cosmetic Sci 37:511–518

    Article  CAS  Google Scholar 

  15. Dai L, Xi X, Li X, Li W, Du Y, Lv Y et al (2021) Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr Polym 271:118425

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Lei F, Li P, Jiang J, Wang K (2020) Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohyd Polym 236:116100

    Article  CAS  Google Scholar 

  17. Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollu R 25:24569–24599

    Article  CAS  Google Scholar 

  18. Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z et al (2018) Hydrogels as emerging materials for translational biomedicine. Adv Ther 2:1800088

    Article  Google Scholar 

  19. Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059

    Article  CAS  PubMed  Google Scholar 

  20. Lai J, Zhou H, Wang M, Chen Y, Jin Z, Li S et al (2018) Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J Mater Chem C 6:13316–13324

    Article  CAS  Google Scholar 

  21. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25:4171–4176

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W (2018) Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. Int J Biol Macromol 107:1811–1820

    Article  CAS  PubMed  Google Scholar 

  23. Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  24. Feng L, Jia SS, Chen Y, Liu Y (2020) Highly elastic slide-ring hydrogel with good recovery as stretchable supercapacitor. Chem Eur J 26:14080–14084

    Article  CAS  PubMed  Google Scholar 

  25. Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Miao S et al (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecues 45:5218–5228

    Article  CAS  Google Scholar 

  26. Liu S, Li L (2017) Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Inter 9:26429–26437

    Article  CAS  Google Scholar 

  27. Zhu J, Guan S, Hu Q, Gao G, Xu K, Wang P (2016) Tough and pH-sensitive hydroxypropyl guar gum/polyacrylamide hybrid double-network hydrogel. Chem Eng J 306:953–960

    Article  CAS  Google Scholar 

  28. Chen Q, Yan X, Zhu L, Chen H, Jiang B, Wei D et al (2016) Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chem Mater 28:5710–5720

    Article  CAS  Google Scholar 

  29. Yan X, Yang J, Chen F, Zhu L, Tang Z, Qin G et al (2018) Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. Compos Sci Technol 163:81–88

    Article  CAS  Google Scholar 

  30. Wang Q, Hou R, Cheng Y, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056

    Article  CAS  Google Scholar 

  31. Abdulrahman I, Tijani HI, Mohammed BA, Saidu H, Yusuf H, Jibrin MN et al (2014) From garbage to biomaterials: an overview on egg shell based hydroxyapatite. J Mater 2014:802467

    Google Scholar 

  32. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohyd Polym 9:7–13

    Article  CAS  Google Scholar 

  33. Yu P, Bao RY, Shi XJ, Yang W, Yang MB (2017) Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohyd Polym 155:507–515

    Article  CAS  Google Scholar 

  34. Sadat-Shojai M, Khorasani MT, Jamshidi A (2015) 3-Dimensional cell-laden nanohydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C 49:835–843

    Article  CAS  Google Scholar 

  35. Ma X, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B 143:81–87

    Article  CAS  Google Scholar 

  36. Bendtsen ST, Quinnell SP, Wei M (2017) Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A 105:1457–1468

    Article  CAS  PubMed  Google Scholar 

  37. Pu’ad NASM, Alipal J, Abdullah HZ, Idris MI, Lee TC (2021) Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Mater Today Proc 42:172–177

    Article  CAS  Google Scholar 

  38. Núñez D, Elgueta E, Varaprasad K, Oyarzún P (2018) Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Mater Lett 230:64–68

    Article  CAS  Google Scholar 

  39. Ghobashy MM, Elbarbary AM, Hegazy DE, Maziad NA (2022) Radiation synthesis of pH-sensitive 2-(dimethylamino)ethyl methacrylate/polyethylene oxide/ZnS nanocomposite hydrogel membrane for wound dressing application. J Drug Deliv Sci Tec 73:103399

    Article  CAS  Google Scholar 

  40. Chen S, Huang J, Zhou Z, Chen Q, Hong M, Yang S et al (2021) Highly elastic anti-fatigue and anti-freezing conductive double network hydrogel for human body sensors. Ind Eng Chem Res 60:6162–6172

    Article  CAS  Google Scholar 

  41. Gong Z, Zhang G, Zeng X, Li J, Li G, Huang W et al (2016) High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl Mater Interfaces 8:24030–24037

    Article  CAS  PubMed  Google Scholar 

  42. Sarmah D, Karak N (2022) Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohyd Polym 289:119428

    Article  CAS  Google Scholar 

  43. Scudeller LA, Mavropoulos E, Tanaka MN, Costa AM, Braga CAC, López EO et al (2017) Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater Sci Eng C 79:802–811

    Article  CAS  Google Scholar 

  44. Cipreste MF, de Rezende MR, Hneda ML, Peres AM, Cotta AAC, de Carvalho TV et al (2018) Functionalized-radiolabeled hydroxyapatite/tenorite nanoparticles as theranostic agents for osteosarcoma. Ceram Int 44:17800–17811

    Article  CAS  Google Scholar 

  45. Liu L, Ni X, Xiong X, Ma J, Zeng X (2019) Low temperature preparation of SiO2 reinforced hydroxyapatite coating on carbon/carbon composites. J Alloys Compd 788:768–778

    Article  CAS  Google Scholar 

  46. Wang J, Gong X, Hai J, Li T (2008) Synthesis of silver-hydroxyapatite composite with improved antibacterial properties. Vacuum 152:132–137

    Article  CAS  Google Scholar 

  47. Tang J, Zhao Z, Liu H, Cui X, Wang J, Xiong T (2019) A novel bioactive Ta/hydroxyapatite composite coating fabricated by cold spraying. Mater Lett 250:197–201

    Article  CAS  Google Scholar 

  48. Jabli M (2020) Synthesis, characterization, and assessment of cationic and anionic dye adsorption performance of functionalized silica immobilized chitosan bio-polymer. Int J Biol Macromol 153:305–316

    Article  CAS  PubMed  Google Scholar 

  49. Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly(vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohyd Polym 67:403–409

    Article  CAS  Google Scholar 

  50. Gharekhani H, Olad A, Mirmohseni A, Bybordi A (2017) Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: synthesis, characterization, and swelling kinetic studies. Carbohyd Polym 168:1–13

    Article  CAS  Google Scholar 

  51. Deng Y, Sun J, Ni X, Yu B (2020) Tribological properties of hierarchical structure artificial joints with polyacrylic acid (AA)-polyacrylamide (AAm) hydrogel and Ti6Al4V substrate. J Polym Res 27:157

    Article  CAS  Google Scholar 

  52. Liu C, Fu L, Jiang T, Liang Y, Wei Y (2021) High-strength and self-healable poly(acrylic acid)/chitosan with organic-inorganic hydrogen bonding networks. Polymer 230:124006

    Article  CAS  Google Scholar 

  53. Zhang P, Zhang N, Wang Q, Wang P, Yuan J, Shen J et al (2019) Disulfide bond reconstruction: A novel approach for grafting of thiolated chitosan onto wool. Carbohyd Polym 203:369–377

    Article  CAS  Google Scholar 

  54. Rehman HU, Chen Y, Guo Y, Du Q, Zhou J, Guo Y et al (2016) Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite. Compos Part A 90:250–260

    Article  CAS  Google Scholar 

  55. Li Z, Su Y, Xie B, Wang H, Wen T, He C et al (2013) A tough hydrogel-hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Mi W, Wang H, Su Y, He C (2014) Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids Surf B 123:959–964

    Article  CAS  Google Scholar 

  57. Jing Z, Zhang Q, Liang YQ, Zhang Z, Hong P, Li Y (2019) Synthesis of poly(acrylic acid)-Fe3+/gelatin/poly(vinyl alcohol) triple-network supramolecular hydrogels with high toughness, high strength and self-healing properties. Polym Int 68:1710–1721

    Article  CAS  Google Scholar 

  58. Jing Z, Xu A, Liang YQ, Zhang Z, Yu C, Hong P et al (2019) Biodegradable poly(acrylic acid-co-acrylamide)/poly(vinyl alcohol) double network hydrogels with tunable mechanics and high self-healing performance. Polymers 11:952

    Article  CAS  PubMed Central  Google Scholar 

  59. Wang Y, Tong L, Zheng Y, Pang S, Sha J, Li L et al (2019) hydrogels with self-healing ability, excellent mechanical properties and biocompatibility prepared from oxidized gum arabic. Eur Polym J 117:363–371

    Article  CAS  Google Scholar 

  60. Wang XH, Song F, Xue J, Qian D, Wang XL, Wang YZ (2018) Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. Polymer 153:637–642

    Article  CAS  Google Scholar 

  61. Liang Y, Shen Y, Sun X, Liang H (2021) Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Int J Biol Macromol 193:629–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Science and Technology of Zhanjiang City (2019A01006 and 2021A05049), “South Sea Scholars” Talent Funding Program (002020992012), Program for Scientic Research Start-up Funds of Guangdong Ocean University (R19010), College Student Innovation and Entrepreneurship Project (CXXL2020292 and CXXL2019299) and College Students' Science and Technology Innovation Cultivation Project of Guangdong Province-Climbing Plan (pdjh2021b0235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanxin Jing.

Ethics declarations

Competing interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, C., Du, X. et al. High strength, tough and self-healing chitosan-based nanocomposite hydrogels based on the synergistic effects of hydrogen bond and coordination bond. J Polym Res 29, 335 (2022). https://doi.org/10.1007/s10965-022-03163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03163-7

Keywords

Navigation