Skip to main content
Log in

Tribological properties of hierarchical structure artificial joints with poly acrylic acid (AA) - poly acrylamide (AAm) hydrogel and Ti6Al4V substrate

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Natural joints have the hierarchical structure of bone and cartilage, providing excellent lubrication and load-carrying capacity. In our research, the hierarchical structure artificial joints of Poly Acrylic Acid (PAA)- Poly Acrylamide (PAAm) hydrogel coating and Ti6Al4V substrate were formed using a simple yet versatile method by mimicking the hierarchical structure of natural joints. The efficient lubrication at friction interfaces was achieved. The composition and microstructure were confirmed by Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM). The hydrogel coatings were successfully prepared on the surface of Ti6Al4V substrate through the adsorption of the charged group. This hierarchical structure material exhibits the lower dynamic friction, approximately 0.085, which is much lower than bare Ti6Al4V, about 0.429. The wear on the surfaces after the tribological experiment is super-shallow and has no significant fracture area around the scratch. The PAA-PAAm hydrogel has a more uniform and compact cross-linked network porous structure, and the porous size is much smaller than PAA hydrogel. The cross-linked network porous structure is the main factor accounting for the low dynamic friction. This hierarchical structure of soft and hard improve the load-carrying ability and has the potential uses in artificial joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jin ZM, Fisher J (2014) Tribology of Hip Joint Replacement. European Surgical Orthopaedics and Traumatology:2365

  2. Pezzotti G, Yamamoto K (2014) Artificial hip joints: the biomaterials challenge. J Mech Behav Biomed Mater 31:3–20

    CAS  PubMed  Google Scholar 

  3. Registry CJR (2014) Annual Report. Canadian institute for health information, Canada

    Google Scholar 

  4. American Joint Replacement Registry (2016) Annual Report. Rosemont, IL, USA

    Google Scholar 

  5. Etkin CD, Springer BD (2017) The American joint replacement Registry-the first 5 years. Arthroplasty today 3:67–69

    PubMed  PubMed Central  Google Scholar 

  6. Zhao ZY, Wang GF, Hou HL, Zhang YL, Wang YQ (2018) The effect of pulsed current on the shear deformation behavior of Ti-6Al-4V alloy. Sci Rep 8:14748

    PubMed  PubMed Central  Google Scholar 

  7. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci 54:397–425

    CAS  Google Scholar 

  8. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9:S6

    PubMed  PubMed Central  Google Scholar 

  9. Xiong DS, Yang YY, Deng YL (2013) Bio-tribological properties of UHMWPE against surface modified titanium alloy. Surf Coat Technol 228:S442–S445

    CAS  Google Scholar 

  10. Costa MYP, Cioffi MOH, Voorwald HJC, Guimaräes VA (2010) An investigation on sliding wear behavior of PVD coatings. Tribol Int 43:2196–2202

    CAS  Google Scholar 

  11. Rahaman M, Reid I, Duggan P, Dowling DP, Hughes G, Hashmi MSJ (2007) Structural and tribological properties of the plasma nitrided Ti-alloy biomaterials: influence of the treatment temperature. Surf Coat Technol 201:4865–4872

    Google Scholar 

  12. Ao N, Liu DX, Wang SX, Zhao Q, Zhang XH, Zhang MM (2016) Microstructure and Tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V alloy. J Mater Sci Technol 32:1071–1076

    CAS  Google Scholar 

  13. Wang S, Liao ZH, Liu YH, Liu WQ (2014) Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy. Surf Coat Technol 240:470–477

    CAS  Google Scholar 

  14. Dowson D (1992) Bio-tribology of natural and replacement synovial joints. In Biomechanics of Diarthrodial joints. V. C. Mow, A. Ratcliffe, S.-Y. Woo, Springer: New York, 2:305

  15. Hills BA (2002) Surface-active phospholipid: a Pandora’s box of clinical applications. Part II Barrier and lubricating properties Intern Med J 32:242–251

    CAS  PubMed  Google Scholar 

  16. Klein J (2006) Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. Part J 220:691–710

    CAS  Google Scholar 

  17. Krishnan R, Kopacz M, Ateshian GA (2004) Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res 22:565–570

    PubMed  PubMed Central  Google Scholar 

  18. Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S (2009) Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic. Soft Matter 5:3438–3445

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein J (2013) Hydration lubrication. Friction 1:1–23

    CAS  Google Scholar 

  20. Xiong DS, Deng YL, Wang N, Yang YY (2014) Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE. Appl Surf Sci 298:56–61

    CAS  Google Scholar 

  21. Deng YL, Xiong DS (2015) Fabrication and properties of UHMWPE grafted with acrylamide polymer brushes. J Polym Res 22:195

    Google Scholar 

  22. Deng YL, Sun JJ, Ni XY, Xiong DS (2020) Multilayers poly (ethyleneimine)/poly(acrylic acid) coatings on Ti6Al4V acting as lubricated polymer bearing Interface. J Biomed Mater Res Part B. 108:2141

  23. Roche ET, Horvath MA, Wamala I et al (2017) Soft robotic sleeve supports heart function. Sci Transl Med 9:3925

    Google Scholar 

  24. Yuk H, Zhang T, Parada GA, Liu X, Zhao X (2016) Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun 7:12028

    PubMed  PubMed Central  Google Scholar 

  25. Pidhatika B, Zhao N, Rhüe J (2019) Development of surface-attached thin film of non-fouling hydrogel from poly(2-oxazoline). J Polym Res 26:21

    Google Scholar 

  26. Ghoreishi SG, Abbasi F, Jalili K (2016) Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. J Polym Res 23:115

    Google Scholar 

  27. Bercea M, Morariu S, Teodorescu M (2016) Rheological investigation of poly(vinyl alcohol)/poly(N-vinyl pyrrolidone) mixtures in aqueous solution and hydrogel state. J Polym Res 23:42

    Google Scholar 

  28. Gong ZY, Niu FF, Zhang GP, Li JH, Li G, Huang WP, Deng H, Sun R, Wong CP (2017) Effects of composition on the properties of dual physically cross-linked hydrogel composed of polyvinyl alcohol and poly (acrylamide-co-acrylic acid). J Polym Res 24:127

    Google Scholar 

  29. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  30. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Google Scholar 

  31. Ma SH, Yu B, Pei XW, Zhou F (2016) Structural hydrogels. Polymer 98:516–535

    CAS  Google Scholar 

  32. Kaneko D, Tada T, Kurokawa T, Gong JP, Osada Y (2005) Mechanically strong hydrogels with ultra-low frictional coefficients. Adv Mater 17:535–538

    CAS  Google Scholar 

  33. Lee KJ, Yun SI (2018) Nanocomposite hydrogels based on agarose and diphenylalanine. Polymer 139:86–97

    CAS  Google Scholar 

  34. Li P, Poon YF, Li W, Zhu HY, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang ET, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156

    CAS  PubMed  Google Scholar 

  35. Branco MC, Pochan DJ, Wagner NJ, Schneider JP (2010) The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials 31:9527–9534

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong JP (2010) Why are double network hydrogels so tough. Soft Matter 6:2583–2590

    CAS  Google Scholar 

  37. Takahashi R, Shimano K, Okazaki H, Kurokawa T, Nakajima T, Nonoyama T, King DR, Gong JP (2018) Tough particle-based double network hydrogels for functional solid surface coatings. Adv Mater Interfaces 5:1801018

    Google Scholar 

  38. Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    CAS  PubMed  Google Scholar 

  39. Bbonzani IC, George HJ, Stevens MM (2006) Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 10:568–575

    Google Scholar 

  40. Dai XY, Zhang YY, Gao LN, Bai T, Wang W, Cui Y, Liu W (2015) A mechanically strong, highly stable, thermoplastic, and self-healable Supramolecular polymer hydrogel. Adv Mater 27:3566–3571

    CAS  PubMed  Google Scholar 

  41. Yuan NX, Xu L, Wang HL, Fu Y, Zhang Z, Liu L, Wang C, Zhao J, Rong J (2016) Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl Mater Interfaces 8:34034–34044

    CAS  PubMed  Google Scholar 

  42. Jin T, Yin H, Easton CD, Seeber A, Hao XJ, Huang C, Zeng RC (2019) New strategy of improving the dispersibility of acrylamide-functionalized graphene oxide in aqueous solution by RAFT copolymerization of acrylamide and acrylic acid. Eur Polym J 117:148–158

    CAS  Google Scholar 

  43. Konishi M, Isobe T, Senna M (2001) Enhancement of photoluminescence of ZnS:Mn nanocrystals by hybridizing with polymerized acrylic acid. J Lumin 93:1–8

    CAS  Google Scholar 

  44. Naseem K, Begum R, Wu WT, Usman M, Irfan A, al-Sehemi AG, Farooqi ZH (2019) Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic acid) core/shell gel particles: adsorption isotherms and kinetic study. J Mol Liq 277:522–531

    CAS  Google Scholar 

  45. Mellott MB, Searcy K, Pishko MV (2001) Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22:929–941

    CAS  PubMed  Google Scholar 

  46. Elliott JE, Macdonald M, Nie J, Bowman CN (2004) Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45:1503–1510

    CAS  Google Scholar 

  47. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  48. Alla SGA, Sen M, El-Naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89:478–485

    Google Scholar 

  49. Deng YL, Xiong DS, Wang K (2014) The mechanical properties of the ultra high molecular weight polyethylene grafted with 3-dimethy (3-(N-methacryamido) propyl) ammonium propane sulfonate. J Mech Behav Biomed Mater 35:18–26

    CAS  PubMed  Google Scholar 

  50. Deng YL, Xiong DS, Shao SL (2013) Study on biotribological properties of UHMWPE grafted with MPDSAH. Mater Sci Eng, C 33:1339–1343

    CAS  Google Scholar 

  51. Gong JP (2014) Materials both tough and soft. Science 344:161–162

    CAS  PubMed  Google Scholar 

  52. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25:4171–4176

    CAS  PubMed  Google Scholar 

  53. Gong JP (2006) Friction and lubrication of hydrogels-its richness and complexity. Soft Matter 2:544–552

    CAS  Google Scholar 

  54. Ma SH, Scaraggi M, Wang DA, Wang X, Liang Y, Liu W, Dini D, Zhou F (2015) Nanoporous substrate-infiltrated hydrogels: a bioinspired regenerable surface for high load bearing and tunable friction. Adv Funct Mater 25:7366–7374

    CAS  Google Scholar 

  55. Gong JP, Kurokawa T, Narita T, Kagata G, Osada Y, Nishimura G, Kinjo M (2001) Synthesis of hydrogels with extremely low surface friction. J Am Chem Soc 123:5582–5583

    CAS  PubMed  Google Scholar 

  56. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    CAS  Google Scholar 

  57. Wang QG, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    CAS  PubMed  Google Scholar 

  58. Lin P, Ma SH, Wang XL, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the financial support of China Postdoctoral Science Foundation (Grant No. 2018 M632310), Youth Science and Technology Innovation Foundation of Nanjing Forestry University (Grant No. CX2018023), The Project National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology (Grant No. 201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Sun, J., Ni, X. et al. Tribological properties of hierarchical structure artificial joints with poly acrylic acid (AA) - poly acrylamide (AAm) hydrogel and Ti6Al4V substrate. J Polym Res 27, 157 (2020). https://doi.org/10.1007/s10965-020-02143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02143-z

Keywords

Navigation