Skip to main content
Log in

Self-healing epoxy networks based on cyclodextrin–adamantane host–guest interactions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An aminated β-cyclodextrin (NCD) with an amine substitution degree of 16.4 was prepared through the thiol–ene reaction of allylated β-cyclodextrin and cysteamine hydrochloride. The thermal curing reactions of sorbitol polyglycidyl ether (SPE) with NCD, Jeffamine® ED-600 (JA, an aliphatic polyether amine), and adamantylamine (NAD) with a feed epoxy/NH2 ratio of 1:1 and feed NH2 molar ratios of NCD/JA/NAD = 1/1/1 and 1/2/1 produced epoxy-amine networks. The FT-IR and gel fraction measurements for the cured products revealed that polymer networks were formed by the reaction of epoxy and amino groups. The cured product with a higher JA content showed lower glass transition temperature (Tg), tensile strength, and tensile modulus results than those of the cured product with a lower JA content. Compared with the product with lower JA, the product with higher JA exhibited self-healing properties upon treatment at 60 °C. The self-healing driven by the NCD/NAD host–guest interaction was demonstrated as the self-healed sample returned to its original state after immersion in an ethanol solution of NAD. Moreover, the corresponding SPE/NCD/JA and SPE/JA/NAD cured products did not exhibit self-healing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee H, Nevelle K (2012) Epoxy resins: Their application and technology. Whitefish, Literary Licensing, LLC

  2. Kishi H, Kunimitsu Y, Imade J, Oshita S, Morishita Y, Asada M (2011) Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer 52:760–768. https://doi.org/10.1016/j.polymer.2010.12.025

    Article  CAS  Google Scholar 

  3. Asada M, Oshita S, Morishita Y, Nakashima Y, Kunimitsu Y, Kishi H (2016) Effect of miscible PMMA chain length on disordered morphologies in epoxy/PMMA-b-PnBA-b-PMMA blends by in situ simultaneous SAXS/DSC. Polymer 105:172–179. https://doi.org/10.1016/j.polymer.2016.10.025

    Article  CAS  Google Scholar 

  4. Huang CF, Chen WH, Aimi J, Hunag YS, Venkatesan S, Chiang YW, Hunag SH, Kuo SW, Chen T (2018) Synthesis of well-defined PCL-b-PnBA-b-PMMA ABC-type triblock copolymers: toward the construction of nanostructures in epoxy thermosets. Polym Chem 9:5644–5654. https://doi.org/10.1039/c8py01357h

    Article  CAS  Google Scholar 

  5. Nabipour H, Wang X, Song L, Hu Y (2021) A high performance fully bio-based epoxy thermoset from a syringaldehyde-derived epoxy monomer cured by furan-derived amine. Green Chem 23:501–510. https://doi.org/10.1039/d0gc03451g

    Article  CAS  Google Scholar 

  6. Meng H, Zhang Q, Lu M, Qu Z, Chen B, Xu C, Lu M (2021) Cure kinetics and properties of high-performance epoxy thermosets cured with active ester-terminated poly (aryl ether ketone). High Perform Polym. https://doi.org/10.1177/09540083211009572

    Article  Google Scholar 

  7. Bowman CN, Kloxin CJ (2012) Covalent adaptable networks: Reversible bond structures incorporated in polymer networks. Angew Chem Int Ed 51:4272–4274. https://doi.org/10.1002/anie.201200708

    Article  CAS  Google Scholar 

  8. Urdl K, Kandelbauer A, Kern W, Müller U, Thebault M, Zikulnig-Rusch E (2017) Self-healing of densely crosslinked thermoset polymers—a critical review. Prog Org Coat 104:232–249. https://doi.org/10.1016/j.porgcoat.2016.11.010

    Article  CAS  Google Scholar 

  9. Peterson AM, Jensen RE, Palmese GR (2010) Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. ACS Appl Mater Inter 2:1141–1149. https://doi.org/10.1021/am9009378

    Article  CAS  Google Scholar 

  10. Bai N, Simon GP, Saito K (2013) Investigation of the thermal self-healing mechanism in a cross-linked epoxy system. RSC Adv 3:20699–20707. https://doi.org/10.1039/c3ra43746a

    Article  CAS  Google Scholar 

  11. Bai N, Simon GP, Saito K (2013) Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym Chem 4:724–730. https://doi.org/10.1039/c2py20611k

    Article  CAS  Google Scholar 

  12. Pratama PA, Sharifi M, Peterson AM, Palmese GR (2013) Room temperature self-healing thermoset based on the Diels−Alder reaction. ACS Appl Mater Inter 5:12425–12431. https://doi.org/10.1021/am403459e

    Article  CAS  Google Scholar 

  13. Fan M, Liu J, Li X, Zhang J, Cheng J (2014) Recyclable Diels−Alder furan/maleimide polymer networks with shape memory effect. Ind Eng Chem Res 53:16156–16163. https://doi.org/10.1021/ie5028183

    Article  CAS  Google Scholar 

  14. Bai N, Simon GP, Saito K (2013) Characterisation of the thermal self-healing of a high crosslink density epoxy thermoset. New J Chem 39:3497–3506. https://doi.org/10.1039/c5nj00066a

    Article  Google Scholar 

  15. Kuang X, Liu G, Dong X, Liu X, Xu J, Wang D (2015) Facile fabrication of fast recyclable and multiple self-healing epoxy materials through Diels-Alder adduct cross-linker. J Polym Sci Part A Polym Chem 53:2094–2103. https://doi.org/10.1002/pola.27655

    Article  CAS  Google Scholar 

  16. Amendola E, Iacono SD, Pastore A, Curcio M, Giordano M, Iadonisi A (2015) Epoxy thermosets with self-healing ability. J Mater Sci Chem Eng 3:162–167. https://doi.org/10.4236/msce.2015.37022

    Article  CAS  Google Scholar 

  17. Turkenburg DH, Fischer HR (2015) Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer 79:187–194. https://doi.org/10.1016/j.polymer.2015.10.031

    Article  CAS  Google Scholar 

  18. Fang F, Chen J, Zou Y, Xu Z, Lu C (2017) Thermally-induced self-healing behaviors and properties of four epoxy coatings with different network architectures. Polymers 9:333. https://doi.org/10.3390/polym9080333

    Article  CAS  PubMed Central  Google Scholar 

  19. Iacono SD, Martone A, Pastore A, Filippone G, Acierno D, Zarrelli M, Giordano M, Amendola E (2017) Thermally activated multiple self-healing Diels-Alder epoxy system. Polym Eng Sci 57:674–679. https://doi.org/10.1002/pen.24570

    Article  CAS  Google Scholar 

  20. Karami Z, Zohuriaan-Mehr MJ, Rostami A (2018) Biobased Diels-Alder Engineered network from furfuryl alcohol and epoxy resin: Preparation and mechano-physical characteristics. ChemistrySelect 3:40–46. https://doi.org/10.1002/slct.201702387

    Article  CAS  Google Scholar 

  21. Oh CR, Lee DI, Park JH, Lee DS (2019) Thermally healable and recyclable graphene-nanoplate/epoxy composites via an in-situ Diels-Alder reaction on the graphene-nanoplate surface. Polymers 11:1057. https://doi.org/10.3390/polym11061057

    Article  CAS  PubMed Central  Google Scholar 

  22. Du A, Mao A, Yu J, Hou J, Zhao N, Han J, Zhao Q, Gao W, Xie T, Bai H (2019) Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nature Commun 10:800. https://doi.org/10.1038/s41467-019-08643-x

    Article  CAS  Google Scholar 

  23. Handique J, Dolui SK (2019) A thermally remendable multiwalled carbon nanotube/epoxy composites via Diels-Alder bonding. J Polym Res 26:163. https://doi.org/10.1007/s10965-019-1804-7

    Article  CAS  Google Scholar 

  24. Pepets M, Filot I, Klumperman B, Goossens H (2013) Self-healing systems based on disulfide–thiol exchange reactions. Polym Chem 4:4955–4965. https://doi.org/10.1039/c3py00087g

    Article  CAS  Google Scholar 

  25. Luzuriaga AR, Martin R, Markaide N, Rekondo A, Cabañero G, Rodríguez J, Odriozola I (2016) Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horizons 6:241–247. https://doi.org/10.1039/c6mh00029k

    Article  Google Scholar 

  26. Azcune I, Odriozola I (2016) Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more. Eur Polym J 84:147–160. https://doi.org/10.1016/j.eurpolymj.2016.09.023

    Article  CAS  Google Scholar 

  27. Zhou F, Guo Z, Wang W, Lei X, Zhang B, Zhang H, Zhang Q (2018) Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos Sci Technol 167:79–85. https://doi.org/10.1016/j.compscitech.2018.07.041

    Article  CAS  Google Scholar 

  28. Zhang Y, Yuan L, Liang G, Gu A (2018) Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener. Ind Eng Chem Res 57:12397–12406. https://doi.org/10.1021/acs.iecr.8b02572

    Article  CAS  Google Scholar 

  29. Zhou L, Zhang G, Feng Y, Zhang H, Li J, Shi X (2018) Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J Mater Sci 53:7030–7047. https://doi.org/10.1007/s10853-018-2015-z

    Article  CAS  Google Scholar 

  30. Mai VD, Shin SR, Lee DS, Kang I (2019) Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with schiff base of vanillin and hexane-1,6-diamine. Polymers 11:293. https://doi.org/10.3390/polym11020293

    Article  CAS  PubMed Central  Google Scholar 

  31. Mo R, Hu J, Huang H, Sheng X, Zhang X (2019) Tunable, self-healing and corrosion inhibiting dynamic epoxy–polyimine network built by postcrosslinking. J Mater Chem A 7:3031–3038. https://doi.org/10.1039/c8ta11546j

    Article  CAS  Google Scholar 

  32. Cordier P, Tournihac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980. https://doi.org/10.1038/nature06669

    Article  CAS  PubMed  Google Scholar 

  33. Hentschel J, Kushner AM, Ziller J, Guan Z (2012) Self-healing supramolecular block copolymers. Angew Chem Int Ed 51:10561–10565. https://doi.org/10.1002/anie.201204840

    Article  CAS  Google Scholar 

  34. Chen Y, Guan Z (2014) Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials. Chem Commun 50:10868–10870. https://doi.org/10.1039/c4cc03168g

    Article  CAS  Google Scholar 

  35. Guadagno L, Vertuccio L, Naddeo C, Calabrese E, Barra G, Raimondo M, Sorrentino A, Binder WH, Michael P, Rana S (2019) Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos B 157:1–13. https://doi.org/10.1016/j.compositesb.2018.08.082

    Article  CAS  Google Scholar 

  36. Guadagno L, Vertuccio L, Naddeo C, Calabrese E, Barra G, Raimondo M, Sorrentino A, Binder WH, Michael P, Rana S (2019) Reversible self-healing carbon-based nanocomposites for structural applications. Polymers 11:903. https://doi.org/10.3390/polym11050903

    Article  CAS  PubMed Central  Google Scholar 

  37. Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W (2013) Healable supramolecular polymers Polym Chem 4:4860–4870. https://doi.org/10.1039/c3py00081h

    Article  CAS  Google Scholar 

  38. Vaiyapuri R, Greenland BW, Colquhoun HM, Elliott JM, Hayes W (2013) Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends – a route to property enhancement. Polym Chem 4:4902–4909. https://doi.org/10.1039/c3py00086a

    Article  CAS  Google Scholar 

  39. Ye Y, Zhang D, Liu T, Liu Z, Pu J, Liu W, Zhao H, Li X, Wang L (2019) Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 142:164–176. https://doi.org/10.1016/j.carbon.2018.10.050

    Article  CAS  Google Scholar 

  40. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host−guest polymers. Nature Commun 2:511–516. https://doi.org/10.1038/ncomms1521

    Article  CAS  Google Scholar 

  41. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin−guest interactions. Acc Chem Res 47:2128–2140. https://doi.org/10.1021/ar500109h

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Yu H, Wang L, Tong R, Akram M, Chen Y, Zhai X (2015) Self-healing polymer materials constructed by macrocycle-based host–guest interactions. Soft Matter 11:1242–1252. https://doi.org/10.1039/c4sm02372b

    Article  CAS  PubMed  Google Scholar 

  43. Jin J, Cai L, Jia YG, Liu S, Chen Y, Ren L (2019) Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. J Mater Chem B 7:1637–1651. https://doi.org/10.1039/c8tb02547a

    Article  CAS  PubMed  Google Scholar 

  44. Liu C, Li J, Jin Z, Hou P, Zhao H, Wang L (2019) Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection. Compos Commun 15:155–161. https://doi.org/10.1016/j.coco.2019.07.011

    Article  Google Scholar 

  45. Mohamed MG, Meng TS, Kuo SW (2021) Intrinsic water-soluble benzoxazine-functionalized cyclodextrin and its formation of inclusion complex with polymer. Polymer 226:123827. https://doi.org/10.1016/j.polymer.2021.123827

    Article  CAS  Google Scholar 

  46. Chan SC, Kuo SW, Chang FC (2021) Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 38:3099–3107. https://doi.org/10.1021/ma050036h

    Article  CAS  Google Scholar 

  47. Hu Z, Liu Y, Xu X, Yuan W, Yang L, Shao Q, Guo Z, Ding T, Huang Y (2019) Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. Polymer 164:79–85. https://doi.org/10.1016/j.polymer.2019.01.010

    Article  CAS  Google Scholar 

  48. Han Y, Qian Y, Zhou X, Hu H, Liu X, Zhou Z, Tang J, Shen Y (2016) Facile synthesis of zwitterionic polyglycerol dendrimers with a β-cyclodextrin core as MRI contrast agent carriers. Polym Chem 7:6354–6362. https://doi.org/10.1039/c6py01404f

    Article  CAS  Google Scholar 

  49. Sugane K, Shibata M (2021) Self-healing thermoset polyurethanes utilizing host-guest interaction of cyclodextrin and adamantane. Polymer 221:123629. https://doi.org/10.1016/j.polymer.2021.123629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naozumi Teramoto of our department for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 454 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugane, K., Maruoka, Y. & Shibata, M. Self-healing epoxy networks based on cyclodextrin–adamantane host–guest interactions. J Polym Res 28, 423 (2021). https://doi.org/10.1007/s10965-021-02790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02790-w

Keywords

Navigation