Skip to main content
Log in

Nitrosamine-safe thiuram disulfide and benzothiazole sulfenamide as a synergistic pair of accelerators for the vulcanization of rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the synergistic activities of the novel bis -(N-phenyl piperazino) thiuram disulfide (PPTD) and bis -(N-ethyl piperazino) thiuram disulfide (EPTD) with N-Cyclohexyl-2-benzothiazole sulfenamide (CBS) in the vulcanization of natural rubber was investigated. A comparison was made between the safe TDs/CBS systems and unsafe TMTD/CBS combinations in terms of their synergisms on curing and tensile mechanical properties. It was found that novel TDs have synergistic activity very effectively with CBS. The results indicated that EPTD/CBS has better scorch safety, cure rate index and mechanical properties compared to that of the unsafe TMTD during the vulcanization of rubber. Moreover, alkyl, instead of aryl substitution, on piperazine can enhance the reactivity of the synthesized thiuram disulfide. At 6:3 mM ratio of EPTD to CBS could be an effective accelerators system to replace the unsafe TMTD from the vulcanization of rubber with similar curing time, improved scorch safety, and better mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kempermann Th, Redetzky W (1969) Synergistic effects of vulcanization accelerators. Mater Plast Elastom 35:73–79

    CAS  Google Scholar 

  2. Skinner TD, Watson AA (1969) EV systems for NR. I. The purpose of efficient vulcanization and development of curing system. Rubber Chem Technol 42:404–417

    Article  Google Scholar 

  3. Coran AY (1994), “Science and Technology of Rubber, 2nd ed, Chap. 7 Vulcanization”, Ed. by Mark JE, Erman B, and Eirich FR, Academic Press, San Diego

  4. Iavicoli I, Carelli G (2006) Evaluation of occupational exposure to N-nitrosamines in a rubber-manufacturing industry. J Occup Environ Med 48:195–198

    Article  CAS  Google Scholar 

  5. Sánchez VB (2008), New Insights in Vulcanization Chemistry Using Microwaves as Heating Source, PhD Thesis (Universitat Ramon Llull)

  6. de Vocht F, Burstyn I, Straif K, Vermeulen R, Jakobsson K, Nichols L, Peplonska B, Taeger D, Kromhout H (2007) Occupational exposure to NDMA and NMor in the European rubber industry. J Environ Monit 9:253–259

    Article  Google Scholar 

  7. Oury B, Limasset JC, Protois JC (1997) Assessment of exposure to carcinogenic N-nitrosamines in the rubber industry. Int Arch Occup Environ Health 70:261–271

    Article  CAS  Google Scholar 

  8. Jacob MK, Mathew MM, Abraham EK, Varkey JK (2016) Residual accelerator and cyto-toxicity studies of NR surgical gloves. Rubber Science 29:322–343

    Google Scholar 

  9. Spiegelhalder B (1983) Carcinogens in the workroom air in the rubber industry. Scand J Work Environ Health 9(Suppl 2):15–26

    CAS  PubMed  Google Scholar 

  10. Lee CC, Russell JQ, Minor JL (1978) Oral toxicity of ferric dimethyl-dithiocarbamate (ferbam) and tetramethylthiuram disulfide (thiram) in rodents. J Toxicol Environ Health Part A 4:93–106

    Article  CAS  Google Scholar 

  11. Spiegelhalder B, Preussmann R (1983) Occupational nitrosamine exposure. 1. Rubber and tyre industry Carcinogenesis 4:1147–1152

    CAS  PubMed  Google Scholar 

  12. Debnath SC, Basu DK (1992) Studies on cure synergism: Effect of safe amine accelerators in the vulcanization of natural rubber. Kautsch Gummi Kunstst 45:934–938

    CAS  Google Scholar 

  13. Alam MN, Mandal SK, Debnath SC (2012) Effect of zinc dithiocarbamates and thiazole-based accelerators on the vulcanization of natural rubber. Rubber Chem Technol 85:120–131

    Article  CAS  Google Scholar 

  14. Naskar N, Debnath SC, Basu DK (2001) Novel method for preparation of carboxylated nitrile rubber–natural rubber blends using bis (diisopropyl) thiophosphoryl polysulfides. J Appl Polym Sci 80:1725–1736

    Article  CAS  Google Scholar 

  15. Debnath SC, Das A, Basu D, Heinrich G (2013) Naturally Occurring Amino Acids: A Suitable Substitute of N-N/- Di-phenyl Guanidine (DPG) in Silica Tyre Formulation? Kautsch Gummi Kunstst 66:25–31

    CAS  Google Scholar 

  16. Barbera V, Musto S, Infortuna G, Cipolletti V, Citterio A, Sun S, Galimberti M (2018) Serinol derivatives for the sustainable vulcanization of diene elastomers. Rubber Chem Technol 91:701–718

    Article  CAS  Google Scholar 

  17. Hait S, Valentín JL, Jiménez AG, Ortega PB, Ghosh AK, Stöckelhuber KW, Wießner S, Heinrich G, Das A (2020) Poly(acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation. Heliyon 6:e04659

  18. Samarasinghe I, Walpalage S, Edirisinghe D, Egodage S (2020) Study on sulfur vulcanized natural rubber formulated with nitrosamine safe diisopropyl xanthogen polysulfide/tertiary butyl benzothiazole sulphenamide binary accelerator system. Prog Rubber Plast Recycl Technol. https://doi.org/10.1177/1477760620977499

    Article  Google Scholar 

  19. Wacker CD, Spiegelhalder B, Preussmann R (1991) New sulfenamide accelerators derived from “safe” amines for the rubber and tyre industry. IARC Sci Publ 105:592–594

    CAS  Google Scholar 

  20. Alam MN, Mandal SK, Debnath SC (2012) Bis(N-benzyl piperazino) thiuram disulfide and dibenzothiazyl disulfide as synergistic safe accelerators in the vulcanization of natural rubber. J Appl Polym Sci 126:1830–1836

    Article  CAS  Google Scholar 

  21. Alam MN, Mandal SK, Roy K, Debnath SC (2014) Synergism of novel thiuram disulfide and dibenzothiazyl disulfide in the vulcanization of natural rubber: curing, mechanical and aging resistance properties. Int J Ind Chem 5:8

    Article  Google Scholar 

  22. Alam MN, Mandal SK, Roy K, Debnath SC (2014) Safe amine based zinc dithiocarbamates for the vulcanization of carbon black reinforced natural rubber. J Appl Polym Sci 131:39988

    Google Scholar 

  23. Raksaksri L, Chuayjuljit S, Chaiwutthinan P, Boonmahitthisud A (2017) Use of TBzTD as noncarcinogenic accelerator for ENR/SiO2 nanocomposites: cured characteristics, mechanical properties, thermal behaviors, and oil resistance. Int J Polym Sci. https://doi.org/10.1155/2017/9721934

    Article  Google Scholar 

  24. Virdi R, Grover B, Ghuman K (2019) “Nitrosamine safe” thiuram disulphide. Rubber Chem Technol 92:90–109

    Article  CAS  Google Scholar 

  25. Alam MN, Kumar V, Choi J, Lee DJ, Debnath SC (2020) Exploring the synergism of nitro­samine-safe bis (N-benzyl piperazino) thiuram disulfide (BPTD) and N-cyclohexyl-2-benzothiazole sulfenamide (CBS) in the natural rubber vulcanization. Kautsch Gummi Kunstst 73:47–53

    CAS  Google Scholar 

  26. Eisenbrand G, Preussmann R, Spiegelhalder B (1980) German Patent Application No. 3029 318.6

  27. Debnath SC, Basu DK (1996) Studies on the effect of thiuram disulfide on NR vulcanization accelerated by thiazole-based accelerator systems. J Appl Polym Sci 60:845–855

    Article  CAS  Google Scholar 

  28. Abhitha K, Thomas K (2013) Safe vulcanization system for heat resistant natural rubber products for engineering applications. American Journal of Engineering Research 3:8–13

    Google Scholar 

  29. Alam MN, Kumar V, Potiyaraj P, Lee D-J, Choi J (2021) Synergistic activities of binary accelerators in presence of magnesium oxide as a cure activator in the vulcanization of natural rubber. J Elastomers Plast. https://doi.org/10.1177/00952443211020794

    Article  Google Scholar 

  30. de Lima DR, da Rocha EBD, de Sousa AMF, Carlos A, da Costa A, Furtado CRG (2020) Effect of vulcanization systems on the properties of natural rubber latex films. Polym Bull dio:https://doi.org/10.1007/s00289-020-03291-4

  31. Saunders KJ (1973) Organic Polymer Chemistry. Chapman & Hall, New York, pp 301–317

    Book  Google Scholar 

  32. Alam MN (2014) Studies on the effect of safe amine based accelerators both in gum and filled vulcanization of rubber, PhD thesis (University of Kalyani), link: http://hdl.handle.net/10603/105610

  33. Scheele W (1996) Kinetic studies of the vulcanization of natural and synthetic rubbers. Rubber Chem Technol 34:1306–1401

    Article  Google Scholar 

  34. Craig D, Davidson WL, Juve AE (1951) Tetramethylthiuram disulfide vulcanization of extracted rubber. V. Low molecular products and the mechanism of zinc oxide activation. J Polym Sci 6:177–187

    Article  CAS  Google Scholar 

  35. Bateman L, Moore CG, Porter M, Saville B (1963) In The Chemistry and Physics of Rubber-Like Substances. Bateman L, Ed., Maclaren and Sons. Ltd., London, Ch.15

  36. Joris SJ, Aspila KI, Chakrabarti VS (1970) Decomposition of monoalkyl dithiocarbamates Analyt Chem 42:647–651

    Article  CAS  Google Scholar 

  37. Boonkerd K, Deeprasertkul C, Boonsomwong K (2016) Effect of sulfur to accelerator ratio on crosslink structure, reversion, and strength in natural rubber. Rubber Chem Technol 89:450–464

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2021 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md Najib Alam or Jungwook Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M., Debnath, S.C. & Choi, J. Nitrosamine-safe thiuram disulfide and benzothiazole sulfenamide as a synergistic pair of accelerators for the vulcanization of rubber. J Polym Res 28, 317 (2021). https://doi.org/10.1007/s10965-021-02668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02668-x

Keywords

Navigation