Skip to main content

Advertisement

Log in

Effect of poly(lactic-co-glycolic acid) blend ratios on the hydrolytic degradation of poly(para-dioxanone)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The poly(para-dioxanone) (PPDO) was blended with various contents of poly(lactic-co-glycolic acid) (PLGA) (10wt%, 20wt%, 30wt%) by solution co-precipitation in this study. The advantage of PLGA is derived from its safety and low cost. The hydrolytic degradation of PPDO / PLGA blends in vitro was studied by weight loss, water absorption, thermal properties, surface morphology, and mechanical properties in phosphate-buffered saline (pH = 7.44) at 37 ℃ for 8 weeks. After degradation, the weight loss and water absorption of all blends increased significantly. PPDO/PLGA (70/30) showed the largest weight loss during the whole degradation period. With the prolongation of hydrolysis degradation time, higher crystallinity of the PPDO was attributed to the chain breakage of unstable ester bonds. A fenestral structure with defects was formed on the surface of the blend bars with degradation. Besides, the glass transition temperature (Tg), the melting temperature (Tm), tensile strength, and breaking elongation of the blends decreased with the hydrolysis rate varying with the blend composition. Compared with pure PLGA and pure PPDO, the PPDO/PLGA blends exhibited a higher hydrolysis rate because of poor miscibility. Therefore, PPDO/PLGA blends with tailored degradation times have a lot of potential as a biomaterial for biomedical applications, such as high-performance absorbable sutures or a filler for ameliorating facial wrinkles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu XL, Feng SM, Wang X, Qi J, Lei D, Li YD, Bai W (2020) Tuning the mechanical properties and degradation properties of polydioxanone isothermal annealing. Turk J Chem 44(5):1430–1444

    Article  CAS  Google Scholar 

  2. Mei FF, Peng Y, Lu ST, Sun F, Zhang Y, Ge C, Zhang Y, Gu HL, Wang YD, Zhao XW, Wang GY (2015) Synthesis and characterization of biodegradable poly(lactic-co-glycolic acid). J Macromol Sci Part B Phys 54(5):562–570

    Article  CAS  Google Scholar 

  3. Xie XL, Bai W, Wu A, Chen DL, Xiong CD, Tang CM, Pang XB (2015) Increasing the compatibility of poly(L-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-L-lactide). J Appl Polym Sci 132(4):1029–1035

    Article  Google Scholar 

  4. Xie XL, Bai W, Tang CM, Chen DL, Xiong CD (2015) Effects of poly(para-dioxanone-co-L-lactide) on the in-vitro hydrolytic degradation behaviors of poly(L-lactide)/poly(para-dioxanone) blends. J Mater Res 30(6):860–868

    Article  CAS  Google Scholar 

  5. Bai W, Zhang LF, Li Q, Chen DL, Xiong CD (2010) In-vitro hydrolytic degradation of poly(para-dioxanone)/poly(D, L-lactide) blends. Mater Chem Phys 122(1):79–86

    Article  CAS  Google Scholar 

  6. Bai W, Zhang ZP, Li Q, Chen DL, Chen HC, Zhao N, Xiong CD (2009) Miscibility, morphology and thermal properties of poly(para-dioxanone)/poly(D, L-lactide) blends. Polym Int 58(2):183–189

    Article  CAS  Google Scholar 

  7. Li Q, Zhang YL, Li JB, Wang H, Lu H, Fan HH, Zheng G (2019) Stimulatory effects of poly-para-dioxanone, poly L-lactic acid, polycaprolactone, and poly(lactic-co-glycolic acid)/PLLA in rats. Mater Express 9(8):962–969

    Article  CAS  Google Scholar 

  8. Kim J, Van Abel D (2015) Neocollagenesis in human tissue injected with a polycaprolactone-based dermal filler. J Cosmet Laser Ther 17(2):99–101

    Article  Google Scholar 

  9. Heidari BS, Chen PL, Ruan R, Davachi SM, Al-Salami H, Pardo EDJ, Zheng M, Doyle B (2021) A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate. J Mater Chem B 9(10):2532–2546

    Article  CAS  Google Scholar 

  10. Xu ZY, Liu JL, Chen JW, Lin JR, Chen QH (2020) Design of Janus particles based on silica@polystyrene and their compatibilization on poly(p-dioxanone)/poly(lactic acid) composites. J Appl Polym Sci 138(16):11

    Google Scholar 

  11. Sun J, Sun K, Bai K, Chen S, Zhao F, Wang FJ, Hong NC, Hu HB (2020) Oversized composite braided biodegradable stents with post-dilatation for pediatric applications: mid-term results of a porcine study. Biomater Sci 8(18):5183–5195

    Article  CAS  Google Scholar 

  12. Yuan Y, Ding SD, Zhao YQ, Wang YZ (2016) Influences of Bis-(2,6-Diisopropylphenyl) carbodiimide on the thermal stability and crystallization of poly(p-Dioxanone). J Macromol Sci Part B Phys 55(5):532–546

    Article  CAS  Google Scholar 

  13. Wang ZC, Li Q, Xiong CD (2015) Crystallization and mechanical properties of biodegradable poly(para-dioxanone)/octamethyl polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method. Bull Mater Sci 38(6):1589–1596

    Article  CAS  Google Scholar 

  14. Dang HC, Luo YK, Xu C, Song F, Wang XL, Wang YZ (2015) Contribution of hemispheric CaCO3 to improving crystalline, physical properties and biocompatibility of poly(p-dioxanone). Ind Eng Chem Res 54(24):6269–6281

    Article  CAS  Google Scholar 

  15. Gu PF, Wusiman A, Wang SY, Zhang Y, Liu ZG, Hu YL, Liu JG, Wang DY (2019) Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohyd Polym 223:115–128

    Article  Google Scholar 

  16. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  Google Scholar 

  17. Bai Y, Wang PQ, Bai W, Zhang LF, Li Q, Xiong CD (2105) Miscibility, thermal and mechanical properties of poly(para-dioxanone)/poly(lactic-co-glycolic acid) blends. J Polym Environ 23(3):367–373

  18. Zhang XJ, Ma C, Bai W, Xiong CD, Chen DL (2014) Miscibility and isothermal crystallization behavior of poly-(L-lactide-co-glycolide)/poly(para-dioxanone) blends. Polym Polym Compos 22(8):705–712

    CAS  Google Scholar 

  19. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-Lactic Acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  Google Scholar 

  20. Zhang XJ, Bai W, Xiong CD, Chen DL, Pang XB (2015) Nonisothermal crystallization behaviour of poly(para-dioxanone) and poly(L-lactic acid) blends. Bull Mater Sci 38(2):517–523

    Article  CAS  Google Scholar 

  21. Zhu GQ, Wang FG, Gao QC, Liu YY (2013) Physicochemical properties of poly(lactic acid-co-glycolic acid) film modified via blending with poly(butyl acrylate-co-methyl methacrylate). Polímeros 23(5):619–623

    Article  CAS  Google Scholar 

  22. Liao L, Dong JT, Shi L, Fan ZY, Li SM, Lu ZQ (2015) In-vitro degradation behavior of L-lactide/trimethylene carbonate/glycolide terpolymers and a composite with poly(l-lactide-co-glycolide) fibers. Polym Degrad Stab 111:203–210

    Article  CAS  Google Scholar 

  23. Cai Q, Wang Y, Yang F, Shen H, Yang XP, Wang SG (2011) Phase separation of polyphosphazene/poly(lactide-co-glycolide) blends prepared under different conditions. Polym Adv Technol 22(12):2448–2457

    Article  CAS  Google Scholar 

  24. Oka M, Mandke R, Lakkadwala S, Lipp L, Singh J (2015) Effect of molar mass and water solubility of incorporated molecules on the degradation profile of the triblock copolymer delivery system. Polymers 7(8):1510–1521

    Article  Google Scholar 

  25. Haghighat F, Abdolkarim S, Ravandi H (2014) Mechanical properties and in-vitro degradation of PLGA suture manufactured via electrospinning. Fiber Polym 15(1):71–77

    Article  CAS  Google Scholar 

  26. Zhang LL, Xiong CD, Deng XM (1996) Miscibility, crystallization and morphology of poly(beta-hydroxybutyrate)/poly(d, l-lactide) blends. Polymer 37(2):235–241

    Article  CAS  Google Scholar 

  27. Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich B (1998) Heat capacity of poly-p-dioxanone. J Macromol Sci Part B Phy B37(1):27–44

    Article  CAS  Google Scholar 

  28. Xie XL, Bai W, Chen DL, Xiong CD, Pang XB (2015) Effect of poly(para-dioxanone) on the hydrolytic degradation of poly(l-lactide). J Polym Environ 23(2):156–164

    Article  CAS  Google Scholar 

  29. Sabino MA, Albuerne J, Müller AJ, Brisson J, Prud’homme RE, (2004) Influence of in-vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone). Biomacromol 5(2):358–370

    Article  CAS  Google Scholar 

  30. Sun JH, Li L, Li J (2019) Effects of furan-phosphamide derivative on flame retardancy and crystallization behaviors of poly(lactic acid). Chem Eng J 369:150–160

    Article  CAS  Google Scholar 

  31. Chu CC, Browning A (1988) The study of thermal and gross morphologic properties of polyglycolic acid upon annealing and degradation treatments. J Biomed Mater Res 22(8):699–712

    Article  CAS  Google Scholar 

  32. Yuan XY, Mak AFT, Yao KD (2002) Comparative observation of accelerated degradation of poly(L-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polym Degrad Stab 75(1):45–53

    Article  CAS  Google Scholar 

  33. Yang KK, Wang XL, Wan YZ, Huang HX (2006) Effects of molecular weights of bioabsorbable poly(p-dioxanone) on its crystallization behaviors. J Appl Polym Sci 100(3):2331–2335

    Article  CAS  Google Scholar 

  34. Bai W, Chen DL, Li Q, Zhang SL, Huang XC, Xiong CD (2009) In-vitro hydrolytic degradation of poly(p-dioxanone) with high molecular weight. J Polym Res 16:471–480

    Article  CAS  Google Scholar 

  35. Im JN, Kim JK, Kim HK, In CH, Lee KY, Park WH (2007) In-vitro and in vivo degradation behaviors of synthetic absorbable bicomponent monofilament suture prepared with poly(p-dioxanone) and its copolymer. Polym Degrad Stab 92(4):667–674

    Article  CAS  Google Scholar 

  36. Keles H, Naylor A, Clegg F, Sammon C (2015) Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym Degrad Stab 119:228–241

  37. Hong KH, Woo SH, Kang TJ (2012) In-vitro degradation and drug-release behavior of electrospun, fibrous webs of poly(lactic-co-glycolic acid). J Appl Polym Sci 124(1):209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81974153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Ma or Wei Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hou, P., Liu, S. et al. Effect of poly(lactic-co-glycolic acid) blend ratios on the hydrolytic degradation of poly(para-dioxanone). J Polym Res 28, 166 (2021). https://doi.org/10.1007/s10965-021-02529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02529-7

Keywords

Navigation