Skip to main content

Advertisement

Log in

Low band gap polymers based on the electrochemical polymerization of Phenazine: studies on the color changing ability in near-infrared region

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, two quinoxline type monomers, 10,14-bis(4-octyl-2-thienyl)-dipyrido[3,2-a:2′,3′-c] [1, 2, 5] thiadiazolo[3,4-i] quinoxaline (OTPTP) and 10,14-bis(4-octyl-2-thienyl)-dibenzo[a, c][1,2,5]thiadiazolo [3,4-i] quinoxaline (OTBTP) were prepared, and the electrochromic features of their polymer films that were synthesized on the ITO glass surface by electrochemical polymerization were studied. The electronic characteristics of two different electron-withdrawing groups and their influences on the electrochemical polymerization of monomers and electrochromic performance of the obtained polymers were observed. The electronic performance of monomers illustrated that OTBTP can be polymerized in the lower potential range than OTPTP due to the stronger electron-withdrawing capability of the electron-withdrawing groups in OTPTP which contains two dipyridine units. The UV Visible NIR spectra analysis showed that both polymers, POTPTP and POTBTP, have one broad absorbance band in the region of 400 ~ 1600 nm at the neutral state. The electrochromic analysis revealed that the two polymer films exhibited reasonable optical contrasts in the infrared region of 1000 ~ 1600 nm with low response time (about 5 s) and low band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee JY, Han S-Y, Lim B, Nah Y-C (2019) A novel quinoxaline-based donor-acceptor type electrochromic polymer. J Ind Eng Chem 70:380–384. https://doi.org/10.1016/j.jiec.2018.10.039

    Article  CAS  Google Scholar 

  2. Bhadra J, Alkareem A, Al-Thani N (2020) A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J Polym Res 27(5):122. https://doi.org/10.1007/s10965-020-02052-1

    Article  CAS  Google Scholar 

  3. Jiramitmongkon K, Chotsuwan C, Asawapirom U, Hirunsit P (2020) Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. J Polym Res 27(1):17. https://doi.org/10.1007/s10965-019-1989-9

    Article  CAS  Google Scholar 

  4. Chen X, Zhang J (2020) Blue-to-transmissive electrochromic poly(2,3-dimethyl-2,3-dihydrothieno[3,4-b][1,4]dioxine) (PEDOT-Me2) with improved optical contrast. J Solid State Electrochem 24(2):441–445. https://doi.org/10.1007/s10008-019-04343-0

    Article  CAS  Google Scholar 

  5. Kim HN, Cho SM, Ah CS, Song J, Ryu H, Kim YH, Kim T-Y (2016) Electrochromic mirror using viologen-anchored nanoparticles. Mater Res Bull 82:16–21. https://doi.org/10.1016/j.materresbull.2016.03.010

    Article  CAS  Google Scholar 

  6. Li S, Wang X, Hu R, Chen H, Li M, Wang J, Wang Y, Liu L, Lv F, Liang X-J, Wang S (2016) Near-infrared (NIR)-absorbing conjugated polymer dots as highly effective Photothermal materials for in vivo Cancer therapy. Chem Mater 28(23):8669–8675. https://doi.org/10.1021/acs.chemmater.6b03738

    Article  CAS  Google Scholar 

  7. Liu S, Chen C, Li Y, Zhang H, Liu U, Wong S, Lam JWY, Ding D, Tang BZ (2019) Constitutional Isomerization Enables Ultrabright NIR-II AIEgen for Brain-Inflammation Imaging. Adv Funct Mater 30(7):1908125. https://doi.org/10.26434/chemrxiv.8684693.v1

  8. Okamoto Y, Tanioka M, Muranaka A, Miyamoto K, Aoyama T, Ouyang X, Kamino S, Sawada D, Uchiyama M (2018) Stable Thiele’s hydrocarbon derivatives exhibiting near-infrared absorption/emission and two-step Electrochromism. J Am Chem Soc 140(51):17857–17861. https://doi.org/10.1021/jacs.8b11092

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Yuan H, Liu Z, Nie C, Liu L, Lv F, Wang Y, Wang S (2014) Cationic Oligo(p-phenylene vinylene) materials for combating drug resistance of Cancer cells by light manipulation. Adv Mater 26(34):5986–5990. https://doi.org/10.1002/adma.201402183

    Article  CAS  PubMed  Google Scholar 

  10. Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41(5):1754–1808. https://doi.org/10.1039/c1cs15205j

    Article  CAS  PubMed  Google Scholar 

  11. Maiorov VA (2019) Electrochromic glasses with separate regulation of transmission of visible light and near-infrared radiation (review). Opt Spectrosc 126(4):412–430. https://doi.org/10.1134/s0030400x19040143

    Article  CAS  Google Scholar 

  12. Żmija J, Małachowski MJ (2011) New organic electrochromic materials and theirs applications. J Achiev Mater Manuf Eng 48(1):14–23

    Google Scholar 

  13. Kline WM, Lorenzini RG, Sotzing GA (2014) A review of organic electrochromic fabric devices. Color Technol 130(2):73–80. https://doi.org/10.1118/1.2167371

    Article  CAS  Google Scholar 

  14. Zhang W, Zhu C, Huang Z, Gong C, Tang Q, Fu X (2019) Electrochromic 2,4,6-triphenyl-1,3,5-triazine based esters with electron donor-acceptor structure. Org Electron 67:302–310. https://doi.org/10.1016/j.orgel.2018.12.041

    Article  CAS  Google Scholar 

  15. Ozyurt F, Durmus A, Gorkem Gunbas E, Toppare L (2010) A low-band gap conductive copolymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline and 3,4-ethylenedioxythiophene. J Solid State Electrochem 14(2):279–283. https://doi.org/10.1007/s10008-008-0750-9

    Article  CAS  Google Scholar 

  16. Pamuk M, Tirkeş S, Cihaner A, Algı F (2010) A new low-voltage-driven polymeric electrochromic. Polymer 51(1):62–68. https://doi.org/10.1016/j.polymer.2009.11.009

    Article  CAS  Google Scholar 

  17. Esmer EN, Tarkuc S, Udum YA, Toppare L (2011) Near infrared electrochromic polymers based on phenazine moieties. Mater Chem and Phys 131(1–2):519–524. https://doi.org/10.1016/j.matchemphys.2011.10.014

    Article  CAS  Google Scholar 

  18. Carbas BB, Kivrak A, Zora M, Önal AM (2012) Synthesis and electropolymerization of a new ion sensitive ethylenedioxy-substituted terthiophene monomer bearing a quinoxaline moiety. J Electroanal Chem 677-680:9–14. https://doi.org/10.1016/j.jelechem.2012.05.005

    Article  CAS  Google Scholar 

  19. Cevher SC, Hizalan G, Temiz C, Udum YA, Toppare L, Cirpan A (2016) Effect of substituent groups on quinoxaline-based random copolymers on the optoelectronic and photovoltaic properties. Polymer 101:208–216. https://doi.org/10.1016/j.polymer.2016.08.076

    Article  CAS  Google Scholar 

  20. Suganya S, Kim N, Jeong JY, Park JS (2017) Benzotriazole-based donor-acceptor type low band gap polymers with a siloxane-terminated side-chain for electrochromic applications. Polymer 116:226–232. https://doi.org/10.1016/j.polymer.2017.03.075

    Article  CAS  Google Scholar 

  21. BaluAtar A, YunJeong J, HunHanJong S, Park S (2018) Efficient blue-to-transmissive electrochromic transitions of alkylated quinoxaline-thiophene based donor-acceptor type conjugated polymers. Polymer 153:95–102. https://doi.org/10.1016/j.polymer.2018.08.009

    Article  CAS  Google Scholar 

  22. Mahmut M, Awut T, Nurulla I, Mijit M (2014) Synthesis and spectroelectrochemical investigation of low-bandgap polymer: integrated quinoxaline and benzimidazole in one electron acceptor unit. J Appl Polym Sci 131(19):40861. https://doi.org/10.1002/app.40861

    Article  CAS  Google Scholar 

  23. Mahmut M, Awut T, Nurulla I, Mijit M (2014) Synthesis of two novel acenaphthyl-quinoxaline based low-band gap polymers and its electrochromic properties. J Polym Res 21(4):403. https://doi.org/10.1007/s10965-014-0403-x

    Article  CAS  Google Scholar 

  24. Mahmut M, Awut T, Nurulla I (2015) Low band gap polymers synthesized by electrochemical polymerization for electrochromic devices. Chinese J Polym Sci 33(10):1442–1452. https://doi.org/10.1007/s10118-015-1698-8

    Article  CAS  Google Scholar 

  25. Tarkuc S, Unver EK, Udum YA, Toppare L (2010) Multi-colored electrochromic polymer with enhanced optical contrast. Eur Polym J 46(11):2199–2205. https://doi.org/10.1016/j.eurpolymj.2010.08.002

    Article  CAS  Google Scholar 

  26. Guo W, Engelman BJ, Haywood TL, Blok NB, Beaudoin DS, Obare SO (2011) Dual fluorescence and electrochemical detection of the organophosphorus pesticides—Ethion, malathion and fenthion. Talanta 87:276–283. https://doi.org/10.1016/j.talanta.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  27. Ergang Wang LH, Wang Z, Hellström S, Mammo W, Zhang F, Inganäs O, Andersson MR (2010) Small Band Gap Polymers Synthesized via a Modified Nitration of 4,7-Dibromo-2,1,3-benzothiadiazole. Org Lett 12(20):4470–4473. https://doi.org/10.1021/ol1020724

    Article  CAS  PubMed  Google Scholar 

  28. Cai T, Zhou Y, Wang E, Hellström S, Zhang F, Xu S, Inganäs O, Andersson MR (2010) Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Sol Energy Mater Sol Cells 94:1275–1281. https://doi.org/10.1016/j.solmat.2010.03.024

    Article  CAS  Google Scholar 

  29. Zhang Y, Shi J, He X, Tu G (2016) All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. J Mater Chem A 4(35):13519–13524. https://doi.org/10.1039/c6ta03784d

    Article  CAS  Google Scholar 

  30. Perzon E, Wang X, Admassie S, Ingana O, Anderson MR (2006) An alternating low band-gap polyfluorene for optoelectronic devices. Polymer 47:4261–4268. https://doi.org/10.1016/j.polymer.2006.03.110

    Article  CAS  Google Scholar 

  31. Zhou S, An C, Stelzig T, Puniredd SR, Guo X, Pisula W, Baumgarten M (2015) Strengthening the acceptor properties of thiadiazoloquinoxalines via planarization. New J Chem 39(9):6765–6770. https://doi.org/10.1039/c5nj00517e

    Article  CAS  Google Scholar 

  32. Yuen JD, Fan J, Seifter J, Lim B, Hufschmid R, Heeger AJ, Wudl F (2011) High performance weak donor–acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, Ambipolar conductivity, mobility, and thermal stability. J Am Chem Soc 133(51):20799–20807. https://doi.org/10.1021/ja205566w

    Article  CAS  PubMed  Google Scholar 

  33. Baran D, Balan A, Celebi S, Meana Esteban B, Neugebauer H, Sariciftci NS, Toppare L (2010) Processable multipurpose conjugated polymer for Electrochromic and photovoltaic applications. Chem Mater 22(9):2978–2987. https://doi.org/10.1021/cm100372t

    Article  CAS  Google Scholar 

  34. Eva Bundgaard FCK (2006) Low-band-gap conjugated polymers based on Thiophene, Benzothiadiazole, and Benzobis(thiadiazole). Macromolecules 39(8):2823–2831. https://doi.org/10.1021/ma052683e

    Article  CAS  Google Scholar 

  35. Sun Y, Zhu G, Zhao X, Kang W, Li M, Zhang X, Yang H, Guo L, Lin B (2020) Solution-processable, hypercrosslinked polymer via post-crosslinking for electrochromic supercapacitor with outstanding electrochemical stability. Sol Energy Mater Sol Cells 215:110661. https://doi.org/10.1016/j.solmat.2020.110661

    Article  CAS  Google Scholar 

  36. Yang S, Sun B, Liu Y, Zhu J, Song J, Hao Z, Zeng X, Zhao X, Shu Y, Chen J, Yi J, He J (2020) Effect of ITO target crystallinity on the properties of sputtering deposited ITO films. Ceram Int 46(5):6342–6350. https://doi.org/10.1016/j.ceramint.2019.11.110

    Article  CAS  Google Scholar 

  37. Tamilavan V, Lee J, Kwon JH, Jang S, Shin I, Agneeswari R, Jung JH, Jin Y, Park SH (2019) Side-chain influences on the properties of benzodithiophene-alt-di(thiophen-2-yl)quinoxaline polymers for fullerene-free organic solar cells. Polymer 172:305–311. https://doi.org/10.1016/j.polymer.2019.04.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21662034) and Doctoral Initiation Fund of Xinjiang University (No.BS150226 and No. BS180218). We sincerely appreciate the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamtimin Mahmut.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simayi, R., Murat, A., Imerhasan, M. et al. Low band gap polymers based on the electrochemical polymerization of Phenazine: studies on the color changing ability in near-infrared region. J Polym Res 27, 293 (2020). https://doi.org/10.1007/s10965-020-02266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02266-3

Keywords

Navigation